
Automated Proof with Caduceus:
Recent Industrial Experience

Dan Sheridan (djs@adelard.com)

Adelard LLP, College Building, Northampton Square, London EC1V 0HB ● +44 20 7490 9450 ● www.adelard.com

2

© Adelard 2008

About this talk

● This is a fuzzy talk, not a maths talk.
● I want to tell you about using an automated

verification tool on a real piece of industrial code.
● I can't show you code or annotations because of

the NDAs that make this work possible.
● Hopefully there will still be something interesting

for the automated verification community!

3

© Adelard 2008

Contents

● Background: the EAST and FEAST projects
● The FEAST4 manual proof
● Applying Caduceus
● Experience of automating the proof:

● The good
● The bad

● Some conclusions

4

© Adelard 2008

EAST and FEAST

● CINIF, the Control and Instrumentation Nuclear
Industry Forum funds applied research on behalf of
the nuclear operating companies

● “Experience with Advanced Static Analysis”
was funded by CINIF in 2001 to focus on analysing
off-the-shelf computer systems in nuclear control
applications

● It became “Further Experience with Advanced
Static Analysis” in 2002. (After that we ran out of
clever ideas for names)

● We looked at the effectiveness and cost of various
techniques (from Lint up to Hoare logic-style proof)
and their compatibility with safety cases

5

© Adelard 2008

Smart sensors

● Little embedded computer systems: replacements
for analogue level alarms and transmitters, with a
bit more intelligence.

6

© Adelard 2008

Why smart sensors?

● Lots of reasons for spending lots of effort on smart
sensors:

● Pure analogue sensors are disappearing
● There is increasing demand for them from the stations
● They are very simple, from an algorithmic point of view ‒

they don't do very much, except linear arithmetic, table
lookups, and I/O

● They are typically written without an OS, removing
much of the potential complexity

● The next step up, from a C&I point of view, is PLCs
‒ fully programmable, real-time OS, ...

7

© Adelard 2008

Industry situation

● The nuclear industry is a small customer, so
doesn't have much leverage with the
manufacturers. If we want formality, we have to do
it ourselves.

● Surprising interest from one supplier: in FEAST we
have worked with three devices (one assembler
and two C) and the supplier has even taken on
board our comments.

● FEAST4, 5 and 6 focus on the latest of these devices

8

© Adelard 2008

Contents

● Background: the EAST and FEAST projects
● The FEAST4 manual proof
● Applying Caduceus
● Experience of automating the proof:

● The good
● The bad

● Some conclusions

9

© Adelard 2008

Rough block diagram

handle inputs

do some
maths

handle outputs

m
ai

nl
in

e
co

de

interrupts

configuration
menus

shared variables

10

© Adelard 2008

The FEAST4 manual proof

● Out of 10,000 lines of
code, we focused on
200 that do the main
transformation of the
process variable (the
bulk of the code is
concerned with the
serial interface and the
menu system).

● In FEAST5 we explored
the problem of arguing
that the rest of the
code doesn't invalidate
the proofs.

11

© Adelard 2008

Why was it hard?

● Documentation shortcomings
● At least we had some!
● It didn't really agree with itself, and it wasn't written with

verification in mind

● Constructing specifications
● We had to make up a formal spec ‒ based on the

documentation, the code, the comments, and what we
thought it was supposed to do

● Presenting the work
● Enough information to be repeatable

● We estimate
● 2 days to write the specs, 1 day of analysis, and 5 days of

presentation

12

© Adelard 2008

Contents

● Background: the EAST and FEAST projects
● The FEAST4 manual proof
● Applying Caduceus
● Experience of automating the proof:

● The good
● The bad

● Some conclusions

13

© Adelard 2008

Mechanising the proofs

● Why?
● Less (or differently) error-prone than manual proof
● More scalable than manual proof
● Repeatable, once annotations have been developed

● Advantages of Caduceus/Why tools
● Ability to use SMT decision procedures
● Diverse backends
● Operate directly on C (unlike Malpas, the current tool of

choice in the nuclear industry)

14

© Adelard 2008

A process for using Caduceus

● Is this obvious? One of the nice things about
Caduceus is that it enables a rapid
edit/prove/debug cycle.

● For each function:
● Run Caduceus on the source to find out what it's going to

choke on:
—Unions, strings, and unsafe pointer manipulation

● Try a precondition and a postcondition for each case in
the specification

—Discover unexpected proof failures (more on this later)
as well as incorrect specs

● Put the specs back together to make a “one-click” proof

15

© Adelard 2008

Language barriers

● Caduceus handles most of C, but leaves out some
constructs (especially union, strings, unsafe
pointers).

● We want to avoid changing the code, though.
● Must be careful with anything we do to it to push it

through the tools – is it really still the same code?

● Interesting overlap with Safer C recommendations
explored in FEAST4, though ‒ we've already tried
to avoid some of these issues.

16

© Adelard 2008

Old habits die hard

#include <stdio.h>;

#include <math.h>;

const char *Ver = “1.1”;

● We don't need complex
headers, but
programmers often
throw them in out of
habit

● The only use of strings
in this signal
processing software ‒
ignore it

17

© Adelard 2008

Memory accesses

addr = (float*)(x+(int)y);

return *addr;
● Lucky in this case ‒

access is to a table in
EEPROM. Essentially an
array lookup because
b[x+y] is equivalent to
*(&b+x+y)

18

© Adelard 2008

Unions

union FloatToByte {
 float F;
 long L;
};

● Not the classic use of unions (to produce sum types); this is a
type-hack. Used to check whether the EEPROM has been
initialised ‒ we want to read floats, but check whether the bit
pattern is all 1s.

● Fixed by replacing the union with a float only, and
dropping the initialisation check. Unsafe?

● There are other union datatypes in the header files ‒ but the
types aren't used in the interesting code, so we commented
them out.

19

© Adelard 2008

Contents

● Background: the EAST and FEAST projects
● The FEAST4 manual proof
● Applying Caduceus
● Experience of automating the proof:

● The good
● The bad

● Some conclusions

20

© Adelard 2008

Experience of applying Caduceus

● Success in that we found a mismatch between the
spec and the code, missed in the manual proof ‒
neatly illustrates the advantage of the approach

● The mistake wasn't a big deal, though ‒ it's to do with the
value of the process variable in the divide-by-zero case,
which is later discarded.

● Cost-effective ‒ the distribution of time was
slightly different from manual proof, but more
scalable:

● Creating spec: 2 days
● Preparing for Caduceus: 3 days
● Executing Caudceus: 3 days

21

© Adelard 2008

The divide-by-zero problem

float example(float w, x, y) {

 if (x-y = 0)

 /* Raise an error */

 else

 return w/(x-y);

}

● Clearly, no divide-by-zero can occur (although there is
danger of overflow...)

● Caduceus adds precondition
● but the conditional provides
● and our specification initially isolated the cases with

x− y≠0.0

x− y≠RealOfInt 0
x≠ y

22

© Adelard 2008

Divide-by-zero and solvers

● What do solvers think of ,
and ?

● CVC3 (in SMTLIB mode) cannot relate any of these
● Yices (SMTLIB) barfs on w/(x-y)
● CVC3 (in CVC-lite mode) treats integers as a

subset of the reals, so has no trouble

x− y≠RealOfInt 0
x≠ y

x− y≠0.0

23

© Adelard 2008

Caduceus: the good

● Operates on nearly unmodified C ‒ it's easy to
argue that the proofs carry across to the real code

● Easy to use ‒ the GUI is brilliant, and allows us
easy access to lots of solvers

● Solver diversity ‒ brings both confidence (when
the solvers agree) and strength (when some
solvers succeed and some don't)

24

© Adelard 2008

Caduceus: the bad

● The GUI could be more supportive: it's possible to
figure out which path through the code is being
considered by the structure of the proof; the GUI
could support this to help find spec problems.

● The frontend should ignore stuff that's not used ‒
e.g., rather than die on unions, only die when they
are instantiated.

● It would be nice to be able to specify multiple
pre/post-condition pairs, rather than having to do
the case split manually.

● The real output of the solvers is hidden in the
terminal window and the debug option. More
parsing?

25

© Adelard 2008

Contents

● Background: the EAST and FEAST projects
● The FEAST4 manual proof
● Applying Caduceus
● Experience of automating the proof:

● The good
● The bad

● Some conclusions

26

© Adelard 2008

Conclusions: my views

● The multiple-solver situation is reminiscent of
BlackBox (planning-as-SAT system). Will a zchaff
of the SMT world emerge and make it all pointless?

● In the course of the FEAST projects, we've also
looked at partial evaluation and flow graph
generation (using Sparse); an all-in-one tool would
be nice. Frama-C?

● I hate not being able to provide more detail on this
work ‒ hopefully we'll be able to eventually release
something anonymised or abstracted.

	Cover
	Slide 2
	Contents
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

