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Context

• Industrial software verification
• Extended static checking

– software verification via 
» user supplied or implicit specifications
» creating a verification condition from the code 

and specifications, and then
» validating it (preferably automatically) using a 

theorem prover
– e.g. ESC/Java(2), Key for Java, Spec# for C#, also 

Mobius project, COQ system, ...
– e.g. provers: SIMPLIFY, Yices, CVC3, Z3, PVS, ...
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Erroneous assumptions are insidious

• User written material is subject to error
– Explicit assumptions
– Method specifications

• False assumptions are generally not what was intended

• Insidious: hide other errors

• If a verification system produces no errors
– Everything OK?
– Something not being checked?
– False assumption hiding an invalid assertion?

• Lots of work on this in model checkers; some in automated 
runtime test analysis
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Review: translation of programs to VCs

•Break up a program into basic blocks
– Each block has no branches
– Blocks are followed by other blocks

• Transform variables into (dynamic) single 
assignment form

• Passify the program by converting all assignments to 
assumptions 

(Barnett & Leino, 2005)
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Basic blocks

a = b;
if (a == 0) {

b = c;
return b;

} else {
b = d;

}
a = d;
return a;

start:
a=b;

block1:
assume a == 0;
b = c;
$returnValue = b;

block2:
assume a != 0;
b = d;

block3:
a=d;
$returnValue = a;

return:
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Dynamic Single Assignment

•int a = 0;
•int b = 1;
•b = a + b;
•a = b + a;

•a$0 = 0;
•b$0 = 1;
•b$1 = a$0 + b$0;
•a$1 = b$1 + a$0;

•Tricky points
– arrays and object field assignments
– blocks with multiple parents

The a$0 etc. are logical variables (quantified over 
the appropriate domain of values)
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Passification

a = 0;

b = a;

b = a + b;

a$0 = 0;

b$0 = a$0;

b$1 = a$0 + b$0;

assume a$0 == 0;

assume b$0 == a$0;

assume b$1 == a$0 + b$0;
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Convert basic block to block equations:

blockA:
assume P;
assume Q;
assert R;
assume S;
goto blockB, 

blockC;

Assumptions come from
assignments
branch conditions
loop conditions
preconditions
postconditions of called methods
explicit user assumptions
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Convert basic block to block equations:

blockA:
assume P;
assume Q;
assert R;
assume S;
goto blockB, 

blockC;

Assertions come from
implicit checks (e.g. array index)
loop specifications
postconditions
preconditions of called methods
explicit user assertions
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Convert basic block to block equations:

blockA:
assume P;
assume Q;
assert R;
assume S;
goto blockB, blockC;

blockA ≡
P →
( Q →

( R & ( S →
(blockB & blockC) ) ) )

blockB ≡ ...

blockC ≡ ...

Each block has a (logical) block variable
- if true, execution encounters no false assertions
- may block at a false assumption
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... and block equations to a Verification Condition

•(  ( blockA ≡ ... )

•& ( blockB ≡ ... )

•& ...                          ) => blockA

The variable of the starting block

This says:  for any assignment of values to variables,
if the block equations are satisfied,

then the program has a valid execution

A valid execution allows false assumptions
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Parallel path form of the VC

• (P & Q & R & ... ) => T1

&    (P & Q & S & ... ) => T2

&    (X & Q & ...        ) => T3

&    (Z &...                ) => T4

&  ...

Each conjunct is an execution path:
a sequence of assumptions ending in an assertion

Lots of common subformulas
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Parallel path form of the VC

• (P & Q & R & ... ) => T1

&    (P & Q & S & ... ) => T2

&    (X & Q & ...        ) => T3

&    (Z &...                ) => T4

&  ...

The VC is true iff each path (trace) either
- has a false assumption
- has a true assertion
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Assumptions

• assignments

• loop invariants

• branch/loop conditions 

• preconditions

• called method postconditions

• explicit assumptions

System generated:
No problems

Bad invariants create
unprovable assertions
as well as bad assumptions
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Assumptions

• assignments

• loop invariants

• branch/loop conditions

• preconditions

• called method postconditions

• explicit assumptions

If a branch condition is
always false:

dead code

Loop condition is always false:
not executed or
never terminated loop
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Assumptions

• assignments

• loop invariants

• branch/loop conditions 

• preconditions

• called method postconditions

• explicit assumptions

Contradictory preconditions:
any assertion succeeds
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Assumptions

• assignments

• loop invariants

• branch/loop conditions 

• preconditions

• called method postconditions

• explicit assumptions

Contradictory postconditions:
any subsequent
assertion succeeds

Should be caught when the 
called method is verified



18

Assumptions

• assignments

• loop invariants

• branch/loop conditions 

• preconditions

• called method postconditions

• explicit assumptions

False user assumption:
any subsequent
assertion succeeds

(Might be false just on one path)
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Assumptions

• Need to check for assumptions that are false
(given previous assumptions):

• false on all paths:
preconditions, 
branch conditions (dead code)

• false on some path: 
user assumptions,
called method postconditions
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Specific path check

In a path

(P1 & P2 & P3 & P4 & ... ) => T

assumption Pk is OK if

(P1 & ... & Pk) is satisfiable

Equivalently
(P1 & ... & Pk) => false is invalid

Need to check each assumption
on each path ???
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Better: check all assumptions in a given path

In a path

(P1 & P2 & P3 & P4 & ... & Pn) => T

all assumptions are OK if

(P1 & ... & Pn) is satisfiable

Equivalently
(P1 & ... & Pn) => false is invalid

One check per path.
Still, there may be many paths.

Also, some paths are infeasible
because of contradictory branch
conditions
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Checking within the block equations

Checks that the assumptions
are valid on SOME path
(not necessarily all paths)

•block:
• assume P;
• assume Q;
• assert false;

assume R;
• ...

Insert an extra assertion:
If VC is still valid, then something is
wrong prior to the assertion.
[ If the assertion provokes a warning
then all is well.]

Might as well do the check at the end 
of the block.
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Previous work: Janota et al., 2007

• Putting in ‘assert false;’ is a standard manual idiom 
for checking feasibility of assumptions

• Janota et al. automated this in ESC/Java2, along 
with a search algorithm
– optimized for short VCs and few prover

invocations

• Improvements:
– Use incremental satisfiability checks
– How to do path specific checks
– Use unsatisfiable cores
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Incremental satisfiability checking

• Minimal changes to the VC

• Uses the SMT solver’s ability to 
– push/pop program state
– or to retract assertions
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Incremental satisfiability checking

• Put in all the ‘assert’ statements to check 
assumptions at once.  But

•block:
• assume P;
• assume Q;
• assert false;

assume R;
• ...

instead of                        write (e.g. for check # 17)

•block:
• assume P;
• assume Q;
• assert $$count != 17;

assume R;
• ...



26

Incremental satisfiability checking

•Then, for the usual SAT check of the VC, check

• VC & ($$count == 0)

• And then check each assumption N by testing

• VC & ($$count == N)

• (retract ‘$$count==0’ and assert ‘$$count == N’)
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Performance question

• Which is faster:

reformulating the VC and restarting the prover
or

saving/restoring program state, followed by an 
incremental SAT check

[or
using retract/reassert]?

In Yices, enabling this mode 
is overall less efficient.

The prover needs to do this
internally to facilitate 
backtracking
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Path specific checks

• Use a conditional assertion:

•block:
• assume P;
• assume Q;
• assert false;

assume R;
• ...

instead of                        write

•block:
• assume P;
• assume Q;
• assert !Z;

assume R;
• ...

where Z is true only for the path being checked
(it is a conjunction of all the branch conditions for the path)
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Performance question

• Which is faster:

reformulating the VC and restarting the prover
with just the small VC for a specific path

or
using incremental checking with the full VC?
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Even better: avoid path-specific checking

@NonNull int[ ] a;

...

sort(a);  

...

(needs to know:  j < k => a[j] <= a[k] )

[ Prover does not do induction ]

Postcondition:
forall int i: ( (0<i && i<a.length) => 

a[i-1] <= a[i] )
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Even better: avoid path-specific checking

@NonNull int[ ] a;

...

sort(a); 

/*@ assume (\forall int j,k; 0<=j && j<=k && k<a.length; 
a[j] <= a[k]); */

...

(needs to know:  j < k => a[j] <= a[k] )

Postcondition:
forall int i: ( (0<i && i<a.length) => 

a[i-1] <= a[i] )

Could write:
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Even better: avoid path-specific checking

@NonNull int[ ] a;

...

sort(a); 

/*@ assume (\forall int i; 0<i && i<a.length; 
a[i-1] <= a[i])    =>

(\forall int j,k; 0<=j && j<=k && k<a.length; 
a[j] <= a[k]); */

...

(needs to know:  j < k => a[j] <= a[k] )

Postcondition:
forall int i: ( (0<i && i<a.length) => 

a[i-1] <= a[i] )

Better:

This is a statement that can be 
checked/proven independent
of the program.

Presumes the prover can handle this syntax.

Presumes the prover will instantiate the
quantifications when needed.
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Using unsatisfiable cores

• The usual check of a program’s VC tells if the VC is 
unsatisfiable (== the program is valid)

• Some provers can also provide an unsatisfiable
core: a subset of assertions that by themselves are 
unsatisfiable.

• This can be used to check for bad assumptions
(and in general for irrelevant code/specs)
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Using unsatisfiable cores

•Instead of a monolithic VC:
(  ( blockA ≡ ... )
& ( blockB ≡ ... )
& ...                          ) => blockA

• use individual assertions (depending on the prover):

assert blockA ≡ ... ;
assert blockB ≡ ... ;
...
assert !blockA;
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Using unsatisfiable cores

AND, for a given check, insert an extra assert statement 
and a top-level assertion that the predicate is true

•block:
• assume P;
• assume Q;

assume R;
• assert Zk;

...

assert blockA ≡ ... ;
assert blockB ≡ ... ;
assert ...
assert !blockA;
assert Zk;

Since Zk is asserted to be true, 
there is no change to the program:

if the VC is UNSAT, the program is valid

However, if ‘assert Zk’ is NOT part of the UNSAT core,
then it does not matter if Zk is true => SOMETHING AMISS
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Using unsatisfiable cores

• Insert an extra (but different) ‘assert Zk’ wherever 
checks are needed (can also use path dependent 
predicates)

• Test whether the associated formula is part of the 
unsatisfiable core (one check if the core is minimal)

• If yes => preceeding assumptions are feasible
• If no => something is infeasible prior to the assert
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Using unsatisfiable cores

•Issue:
• tools do not guarantee minimal unsatisfiable cores
• may need to individually test the some of the 

assertions in the provided UNSAT core to see if they 
are in the minimal core

• no fast algorithm known

• Performance question:
• Is using UNSAT cores a performance improvement 

over individual SAT checks?
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Implementation
Techniques tested using 

– a nascent version of JML for Java 1.6/1.7
– built on the OpenJDK source code base

» provides the Java 1.6->1.7 functionality
– using Yices as the backend prover

» allows incremental SAT checking
» provides UNSAT cores

Tested by hand using C#/Spec#
(no incremental or UNSAT core functionality)

Industrial scale performance comparisons in progress...
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For the future: Relevance

• Vacuity is a subset of Relevance

• UNSAT cores can be used to assess relevance

• A subterm or set of terms is not relevant if it is not 
needed to prove the result
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Test for relevance

Change the VC
... <expr> ...

• to
... Z ...

&  Z == <expr>

and check for unsatisfiability (VC is equivalent)

If ‘Z == <expr>’ is NOT part of the UNSAT core, then
it is not needed to prove the specifications:

it is irrelevant
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Implications of irrelevance

• Problem with the code: some computations might 
actually be irrelevant

– Unused assignments
– Incorrect logic

• Problem with the specs:
– Specs have inadequate coverage (not all of the 

code is needed to establish the specs)
– Analogous to coverage checking for runtime 

tests
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Concluding Observations
• As noted by many: checking for infeasible (vacuous) 
assumptions is important

• Such checks can be simplified and the performance improved 
(we anticipate) by using

– incremental satisfiability checks
– unsatisfiable cores

• It can be helpful to reformulate the VC using new variables that 
substitute for subformulae under scrutiny (appropriate names 
can help in understanding counterexamples)

• User-supplied assumptions are best formulated as quantified 
tautologies without free variables
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Performance questions in progress

• SAT checking vs. UNSAT cores
» (there is a penalty to assert formulae such that 

cores can be produced and to allow 
retractions)

• Using incremental checks vs. from scratch checks 
(with usual satisfiability checking) to check 
assumptions

• Use of definitions vs. formulating multiple smaller 
VCs (for path-specific SAT checking)

• Are these comparisons significantly different across 
different provers




