
Detecting Erroneous Assumptions when
verifying software using SMT solvers

David R. Cok
Eastman Kodak Company Research Laboratories
14 July 2008
AFM ’08
(Note: E-version distributed at CAV is the preliminary, not final version)

2

Context

• Industrial software verification
• Extended static checking

– software verification via
» user supplied or implicit specifications
» creating a verification condition from the code

and specifications, and then
» validating it (preferably automatically) using a

theorem prover
– e.g. ESC/Java(2), Key for Java, Spec# for C#, also

Mobius project, COQ system, ...
– e.g. provers: SIMPLIFY, Yices, CVC3, Z3, PVS, ...

3

Erroneous assumptions are insidious

• User written material is subject to error
– Explicit assumptions
– Method specifications

• False assumptions are generally not what was intended

• Insidious: hide other errors

• If a verification system produces no errors
– Everything OK?
– Something not being checked?
– False assumption hiding an invalid assertion?

• Lots of work on this in model checkers; some in automated
runtime test analysis

4

Review: translation of programs to VCs

•Break up a program into basic blocks
– Each block has no branches
– Blocks are followed by other blocks

• Transform variables into (dynamic) single
assignment form

• Passify the program by converting all assignments to
assumptions

(Barnett & Leino, 2005)

5

Basic blocks

a = b;
if (a == 0) {

b = c;
return b;

} else {
b = d;

}
a = d;
return a;

start:
a=b;

block1:
assume a == 0;
b = c;
$returnValue = b;

block2:
assume a != 0;
b = d;

block3:
a=d;
$returnValue = a;

return:

6

Dynamic Single Assignment

•int a = 0;
•int b = 1;
•b = a + b;
•a = b + a;

•a$0 = 0;
•b$0 = 1;
•b$1 = a$0 + b$0;
•a$1 = b$1 + a$0;

•Tricky points
– arrays and object field assignments
– blocks with multiple parents

The a$0 etc. are logical variables (quantified over
the appropriate domain of values)

7

Passification

a = 0;

b = a;

b = a + b;

a$0 = 0;

b$0 = a$0;

b$1 = a$0 + b$0;

assume a$0 == 0;

assume b$0 == a$0;

assume b$1 == a$0 + b$0;

8

Convert basic block to block equations:

blockA:
assume P;
assume Q;
assert R;
assume S;
goto blockB,

blockC;

Assumptions come from
assignments
branch conditions
loop conditions
preconditions
postconditions of called methods
explicit user assumptions

9

Convert basic block to block equations:

blockA:
assume P;
assume Q;
assert R;
assume S;
goto blockB,

blockC;

Assertions come from
implicit checks (e.g. array index)
loop specifications
postconditions
preconditions of called methods
explicit user assertions

10

Convert basic block to block equations:

blockA:
assume P;
assume Q;
assert R;
assume S;
goto blockB, blockC;

blockA ≡
P →
(Q →

(R & (S →
(blockB & blockC))))

blockB ≡ ...

blockC ≡ ...

Each block has a (logical) block variable
- if true, execution encounters no false assertions
- may block at a false assumption

11

... and block equations to a Verification Condition

•((blockA ≡ ...)

•& (blockB ≡ ...)

•& ...) => blockA

The variable of the starting block

This says: for any assignment of values to variables,
if the block equations are satisfied,

then the program has a valid execution

A valid execution allows false assumptions

12

Parallel path form of the VC

• (P & Q & R & ...) => T1

& (P & Q & S & ...) => T2

& (X & Q & ...) => T3

& (Z &...) => T4

& ...

Each conjunct is an execution path:
a sequence of assumptions ending in an assertion

Lots of common subformulas

13

Parallel path form of the VC

• (P & Q & R & ...) => T1

& (P & Q & S & ...) => T2

& (X & Q & ...) => T3

& (Z &...) => T4

& ...

The VC is true iff each path (trace) either
- has a false assumption
- has a true assertion

14

Assumptions

• assignments

• loop invariants

• branch/loop conditions

• preconditions

• called method postconditions

• explicit assumptions

System generated:
No problems

Bad invariants create
unprovable assertions
as well as bad assumptions

15

Assumptions

• assignments

• loop invariants

• branch/loop conditions

• preconditions

• called method postconditions

• explicit assumptions

If a branch condition is
always false:

dead code

Loop condition is always false:
not executed or
never terminated loop

16

Assumptions

• assignments

• loop invariants

• branch/loop conditions

• preconditions

• called method postconditions

• explicit assumptions

Contradictory preconditions:
any assertion succeeds

17

Assumptions

• assignments

• loop invariants

• branch/loop conditions

• preconditions

• called method postconditions

• explicit assumptions

Contradictory postconditions:
any subsequent
assertion succeeds

Should be caught when the
called method is verified

18

Assumptions

• assignments

• loop invariants

• branch/loop conditions

• preconditions

• called method postconditions

• explicit assumptions

False user assumption:
any subsequent
assertion succeeds

(Might be false just on one path)

19

Assumptions

• Need to check for assumptions that are false
(given previous assumptions):

• false on all paths:
preconditions,
branch conditions (dead code)

• false on some path:
user assumptions,
called method postconditions

20

Specific path check

In a path

(P1 & P2 & P3 & P4 & ...) => T

assumption Pk is OK if

(P1 & ... & Pk) is satisfiable

Equivalently
(P1 & ... & Pk) => false is invalid

Need to check each assumption
on each path ???

21

Better: check all assumptions in a given path

In a path

(P1 & P2 & P3 & P4 & ... & Pn) => T

all assumptions are OK if

(P1 & ... & Pn) is satisfiable

Equivalently
(P1 & ... & Pn) => false is invalid

One check per path.
Still, there may be many paths.

Also, some paths are infeasible
because of contradictory branch
conditions

22

Checking within the block equations

Checks that the assumptions
are valid on SOME path
(not necessarily all paths)

•block:
• assume P;
• assume Q;
• assert false;

assume R;
• ...

Insert an extra assertion:
If VC is still valid, then something is
wrong prior to the assertion.
[If the assertion provokes a warning
then all is well.]

Might as well do the check at the end
of the block.

23

Previous work: Janota et al., 2007

• Putting in ‘assert false;’ is a standard manual idiom
for checking feasibility of assumptions

• Janota et al. automated this in ESC/Java2, along
with a search algorithm
– optimized for short VCs and few prover

invocations

• Improvements:
– Use incremental satisfiability checks
– How to do path specific checks
– Use unsatisfiable cores

24

Incremental satisfiability checking

• Minimal changes to the VC

• Uses the SMT solver’s ability to
– push/pop program state
– or to retract assertions

25

Incremental satisfiability checking

• Put in all the ‘assert’ statements to check
assumptions at once. But

•block:
• assume P;
• assume Q;
• assert false;

assume R;
• ...

instead of write (e.g. for check # 17)

•block:
• assume P;
• assume Q;
• assert $$count != 17;

assume R;
• ...

26

Incremental satisfiability checking

•Then, for the usual SAT check of the VC, check

• VC & ($$count == 0)

• And then check each assumption N by testing

• VC & ($$count == N)

• (retract ‘$$count==0’ and assert ‘$$count == N’)

27

Performance question

• Which is faster:

reformulating the VC and restarting the prover
or

saving/restoring program state, followed by an
incremental SAT check

[or
using retract/reassert]?

In Yices, enabling this mode
is overall less efficient.

The prover needs to do this
internally to facilitate
backtracking

28

Path specific checks

• Use a conditional assertion:

•block:
• assume P;
• assume Q;
• assert false;

assume R;
• ...

instead of write

•block:
• assume P;
• assume Q;
• assert !Z;

assume R;
• ...

where Z is true only for the path being checked
(it is a conjunction of all the branch conditions for the path)

29

Performance question

• Which is faster:

reformulating the VC and restarting the prover
with just the small VC for a specific path

or
using incremental checking with the full VC?

30

Even better: avoid path-specific checking

@NonNull int[] a;

...

sort(a);

...

(needs to know: j < k => a[j] <= a[k])

[Prover does not do induction]

Postcondition:
forall int i: ((0<i && i<a.length) =>

a[i-1] <= a[i])

31

Even better: avoid path-specific checking

@NonNull int[] a;

...

sort(a);

/*@ assume (\forall int j,k; 0<=j && j<=k && k<a.length;
a[j] <= a[k]); */

...

(needs to know: j < k => a[j] <= a[k])

Postcondition:
forall int i: ((0<i && i<a.length) =>

a[i-1] <= a[i])

Could write:

32

Even better: avoid path-specific checking

@NonNull int[] a;

...

sort(a);

/*@ assume (\forall int i; 0<i && i<a.length;
a[i-1] <= a[i]) =>

(\forall int j,k; 0<=j && j<=k && k<a.length;
a[j] <= a[k]); */

...

(needs to know: j < k => a[j] <= a[k])

Postcondition:
forall int i: ((0<i && i<a.length) =>

a[i-1] <= a[i])

Better:

This is a statement that can be
checked/proven independent
of the program.

Presumes the prover can handle this syntax.

Presumes the prover will instantiate the
quantifications when needed.

33

Using unsatisfiable cores

• The usual check of a program’s VC tells if the VC is
unsatisfiable (== the program is valid)

• Some provers can also provide an unsatisfiable
core: a subset of assertions that by themselves are
unsatisfiable.

• This can be used to check for bad assumptions
(and in general for irrelevant code/specs)

34

Using unsatisfiable cores

•Instead of a monolithic VC:
((blockA ≡ ...)
& (blockB ≡ ...)
& ...) => blockA

• use individual assertions (depending on the prover):

assert blockA ≡ ... ;
assert blockB ≡ ... ;
...
assert !blockA;

35

Using unsatisfiable cores

AND, for a given check, insert an extra assert statement
and a top-level assertion that the predicate is true

•block:
• assume P;
• assume Q;

assume R;
• assert Zk;

...

assert blockA ≡ ... ;
assert blockB ≡ ... ;
assert ...
assert !blockA;
assert Zk;

Since Zk is asserted to be true,
there is no change to the program:

if the VC is UNSAT, the program is valid

However, if ‘assert Zk’ is NOT part of the UNSAT core,
then it does not matter if Zk is true => SOMETHING AMISS

36

Using unsatisfiable cores

• Insert an extra (but different) ‘assert Zk’ wherever
checks are needed (can also use path dependent
predicates)

• Test whether the associated formula is part of the
unsatisfiable core (one check if the core is minimal)

• If yes => preceeding assumptions are feasible
• If no => something is infeasible prior to the assert

37

Using unsatisfiable cores

•Issue:
• tools do not guarantee minimal unsatisfiable cores
• may need to individually test the some of the

assertions in the provided UNSAT core to see if they
are in the minimal core

• no fast algorithm known

• Performance question:
• Is using UNSAT cores a performance improvement

over individual SAT checks?

38

Implementation
Techniques tested using

– a nascent version of JML for Java 1.6/1.7
– built on the OpenJDK source code base

» provides the Java 1.6->1.7 functionality
– using Yices as the backend prover

» allows incremental SAT checking
» provides UNSAT cores

Tested by hand using C#/Spec#
(no incremental or UNSAT core functionality)

Industrial scale performance comparisons in progress...

39

For the future: Relevance

• Vacuity is a subset of Relevance

• UNSAT cores can be used to assess relevance

• A subterm or set of terms is not relevant if it is not
needed to prove the result

40

Test for relevance

Change the VC
... <expr> ...

• to
... Z ...

& Z == <expr>

and check for unsatisfiability (VC is equivalent)

If ‘Z == <expr>’ is NOT part of the UNSAT core, then
it is not needed to prove the specifications:

it is irrelevant

41

Implications of irrelevance

• Problem with the code: some computations might
actually be irrelevant

– Unused assignments
– Incorrect logic

• Problem with the specs:
– Specs have inadequate coverage (not all of the

code is needed to establish the specs)
– Analogous to coverage checking for runtime

tests

42

Concluding Observations
• As noted by many: checking for infeasible (vacuous)
assumptions is important

• Such checks can be simplified and the performance improved
(we anticipate) by using

– incremental satisfiability checks
– unsatisfiable cores

• It can be helpful to reformulate the VC using new variables that
substitute for subformulae under scrutiny (appropriate names
can help in understanding counterexamples)

• User-supplied assumptions are best formulated as quantified
tautologies without free variables

43

Performance questions in progress

• SAT checking vs. UNSAT cores
» (there is a penalty to assert formulae such that

cores can be produced and to allow
retractions)

• Using incremental checks vs. from scratch checks
(with usual satisfiability checking) to check
assumptions

• Use of definitions vs. formulating multiple smaller
VCs (for path-specific SAT checking)

• Are these comparisons significantly different across
different provers

