
AFM’08: Third Workshop on

Automated Formal Methods

14 July 2008

Princeton, New Jersey

John Rushby and Natarajan Shankar (Editors)

SRI International

Computer Science Laboratory

Menlo Park CA 94025 USA

{rushby | shankar}@csl.sri.com





Table of Contents

Simulink Design Verifier—Applying Automated Formal Methods to Simulink and Stateflow 1
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Preface

This volume contains the proceedings of the Third Workshop on Automated Formal Methods
held on 14 July 2008 in Princeton, New Jersey in association with the Conference on Automated
Verification (CAV). The first AFM workshop was held as part of the Federated Logic Conference
in July 2006 in Seattle, Washington, and the second in association with the Automated Software
Engineering (ASE) conference in November 2007 in Atlanta, Georgia. The focus of the AFM
workshop is on topics related to the SRI suite of formal methods tools including PVS, SAL, and
Yices. We received 8 submissions of which 6 were accepted for presentation at the workshop.

In addition to the contributed papers, the conference included an invited paper by Grégoire
Hamon on Simulink Design Verifier–Applying Automated Formal Methods to Simulink and State-

flow, short tutorials on each of Yices, SAL, and PVS, and a session of short presentations on
current research and discussions of extensions and enhancements to these verification tools.

We thank the distinguished members of the program committee as well as the external
referees for their thorough and thoughtful reviews of the submitted papers. The paper submission
and reviewing process was managed through the Easychair conference management system. We
also thank the organizers associated with CAV 2008, particularly the program co-chair Aarti
Gupta, and the workshops chair Byron Cook. We also received help from the ACM Publications
Coordinator Adrienne Griscti and our SRI colleagues Bruno Dutertre, Sam Owre, and Ashish
Tiwari.

We hope the AFM workshop series will continue to serve as a forum for communication and
cooperation between the developers and users of automated formal verification tools.

John Rushby
Natarajan Shankar
Menlo Park, California
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Simulink Design Verifier — Applying Automated Formal
Methods to Simulink and Stateflow

Grégoire Hamon
The MathWorks

Natick, MA – USA
Gregoire.Hamon@MathWorks.com

ABSTRACT
We present Simulink Design Verifier, a tool distributed by
The MathWorks to help Simulink users in their verification
and validation activities. Simulink Design Verifier automat-
ically generates test input sequences for a model or proves
properties about this model. The tool is based on automatic
theorem proving and model-checking techniques and aims
at a high level of integration with Simulink to make formal
verification techniques easier to incorporate into engineers’
workflows. In this presentation, we describe the tool, high-
light some of the technical choices that were made during
its conception, and discuss user experiences with it.

1. INTRODUCTION
The advent of model-based design environments in the de-
sign of control systems has brought an interesting step be-
tween the specification and the code — the model. The
model can be seen as an executable specification of the sys-
tem under design. From a formal methods point of view, it
brings an opportunity to apply automatic tools much earlier
in the development cycle, and at a higher level of abstrac-
tion. Simulink [2] is a very widely used model-based design
environment. It supports the description of both discrete
and continuous time models in a graphical block-diagram
language. Models can also include state-machine diagrams
using Stateflow, or imperative code written in Embedded
Matlab. The environment has extensive capabilities for sim-
ulation and code-generation.

Simulink Design Verifier [3] is a recently introduced tool that
provides automatic test case generation and property prov-
ing for models. It makes use of automatic theorem-proving
and model-checking technologies and fully integrates into
Simulink. The tool was conceived to fit into users’ workflow
if needed, requiring as little interaction as possible for simple
activities. It is also extensible so that advanced users that
want to specialize the tool to their needs can do so.

In this presentation, we will first present Simulink Design
Verifier, then highlight some of the design decisions that
were made during its conception, as well as discuss user
experience with the tool and directions for improvement.

2. ANALYZING SIMULINK
Simulink Design Verifier has two distinct uses: test case gen-
eration on one hand, property proving on the other hand.
These two activities make use of the same core technology,
based on model-checking. As was previously reported [1,
4], a model-checker can be efficiently used as an automatic
test case generator, as long as the model-checker can gener-
ate concrete counter-examples when a property is violated.
The engine used by Simulink Design Verifier is provided by
Prover Technology, it is based on SAT-solving techniques
and can decide problems expressed in a range of theories
including linear integer and rational arithmetics.

The architecture of the tool is fairly straightforward: the
Simulink model to analyze is translated to the input lan-
guage of the model-checker; during the translation, proper-
ties and test objectives are inserted. Two related questions
when considering the analysis of Simulink models are the
subset of the language that should be supported and how to
do the translation.

The tool is restricted to the analysis of discrete controller
models. Simulink can describe a much wider range of sys-
tems, but with today’s verification technology, and when
designing a general purpose tool, this is not really a choice.
This is also the subset of Simulink that is supported by the
code-generator. The only other limitations are at the block
level, for example trigonometric functions are not directly
supported. Both Stateflow and Embedded Matlab are sup-
ported, and all data types including fixed-point arithmetics
are supported. The translation itself uses the code-generator
front-end to get an abstract representation of the model that
is then translated to the input language of the model checker.

3. PROPERTIES AND TEST OBJECTIVES
Once the model is translated, we need to define objectives
for the analysis. In the simplest cases, the objectives are
inferred from the model itself. This is mainly for users inter-
ested in generating test cases for common coverage criteria.
Simulink also has assertion blocks that can stop simulation
if a particular condition is reached; if a model contains such
blocks, the tool can try proving that these assertions cannot
be raised.
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More advanced users want to define their own objectives —
objectives corresponding to functional testing requirements,
or complex properties. Design Verifier comes with a library
of blocks that can be used to define objectives as observers:
Simulink itself is used as the specification language for the
property. The library itself only contains basic blocks com-
paring a signal to a value, or a set of values. This library
has equivalent constructions in Stateflow. Objectives can be
defined inside the model under analysis itself, or outside us-
ing Simulink modular capabilities. Currently, the tool only
supports the definition of safety properties.

Using Simulink as the specification language is for a large
number of users a very good choice: they already know the
language, it is expressive enough to describe complex ob-
jectives. Some users however would need to express their
objectives at a higher level, closer to the requirements. The
links between requirements and model is an open area for
research. Simulink provides a tool to link elements of a
model to an informal requirement, this can be used to link
a requirement to an objective written in Simulink.

4. UNDERSTANDING THE RESULTS
Three artifacts are generated by the Simulink Design Veri-
fier: a data file, a test harness, and a report. The data file
contains all the information that might be needed about the
analysis that was run, including the model version number,
the configuration of the tool, the details of any test case
or counter-example that was found. The test harness is a
new model, containing both the model under analysis and
an input generator that can drive the model using the test
cases and counter-examples that were generated. The report
presents in an easy to read way details about the results of
the analysis.

These aspects are often considered side-issues to the formal
analysis, but from a user perspective, they are critical. The
amount of data produced when generating test cases for cov-
erage can be huge, and the user needs to be able to reuse,
inspect, and understand these results. When proving prop-
erties, the results of an analysis can be greatly confusing —
for example if a user gets a counter-example for a property
that he thought was valid, he needs to be able to review
precisely what happened to understand if the property it-
self was expressed correctly, if external constraints on the
environment were correctly set, etc.

5. DISCUSSION
Simulink Design Verifier is a new tool, users are still learn-
ing how to best use it, and incorporate it in their design
process. Initial feedback is very positive, in general there is
an important and growing interest in formal verification.

The first question that comes when talking about model-
checking techniques is often “what about scalability?” —
scalability is of course a problem, and will probably always
be, but is not the one big problem. Often, as users look at
bigger and bigger models, other problems come before scal-
ability — compatibility problems in particular. Scalability
also depends on the activity: in general test case genera-
tion can handle larger models. Some scalability problems
are “contained” such as the known counter problems: a sys-
tem has to exhaust a (big) counter to continue execution —

such cases can be addressed by special treatment; Simulink
Design Verifier has abstractions for some counter patterns.

Compatibility problems often arise when users start looking
at bigger models - these are either coming from user-defined
blocks for which Simulink Design Verifier has no informa-
tion, or from non-linear operations. The tool has a mech-
anism for users to give a Simulink approximation of their
user-defined blocks, and automatically use this representa-
tion. Non-linear operations are a big problem, and the main
limitation of the technology used.

Although the same core technology is used to do both prop-
erty proving and test case generation, the technology is used
very differently. Test case generation, at least for cover-
age criteria, involve a huge number of objectives, most of
which are actually easy to reach, and spawning over the
complete model. Property proving often involves a much
smaller number of objectives, but they can be very hard to
reach. Another key difference is that the validity of a test
can be checked by simulation, opening the way to aggres-
sive simplifications and abstractions. On the other hand,
test case generation relies on the ability to generate a con-
crete counter-example, which can make some abstractions
applicable only to property proving.

Using model-checkers to generate test cases is in practice
very appealing. Very short test case can be discovered if
that’s the need, but the analysis can also be done so that
it will find longer ones. The ability to get the result that
there is no test case for a configuration, in truth proving a
property rather than disproving it, is very important as it
definitely indicates a problem in the model.

Open areas of investigation are plentiful. One of them is
understanding how such tools can better integrate in user
workflow, and this leads to understanding how to help users
in expressing high-level requirements and bringing them to
the tool for analysis.

6. REFERENCES
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Using Yices as an automated solver in Isabelle/HOL

Levent Erkök John Matthews

Galois, Inc.
421 SW 6th Ave. Suite 300

Portland, OR 97004
{levent.erkok,matthews}@galois.com

ABSTRACT

We describe our integration of the Yices SMT solver into
the Isabelle theorem prover. This integration allows users
to take advantage of the powerful SMT solving techniques
within the interactive theorem proving environment of Is-
abelle, considerably increasing the automation level for a
significant subset of Isabelle/HOL.

1. INTRODUCTION
This paper describes the Isabelle ismt tactic,1 developed

by Galois to seamlessly integrate the Yices SMT solver within
the interactive theorem proving environment of Isabelle, thus
increasing the automation level considerably as well as pro-
viding counterexample information back to the user when
Yices detects a formula is invalid; similar to PVS’s yices

strategy [6].
The ismt tactic is freely available on the internet with a

permissive BSD-style license [5].

1.1 Yices
Yices is a modern SMT solver that supports uninterpreted

function symbols with equality, linear real and integer arith-
metic, scalar types, recursive datatypes, tuples, records, ex-
tensional arrays, fixed-size bit vectors, λ-expressions, and
quantifiers [7, 11, 16]. Yices’s input language is based on a
LISP like syntax extended with type declarations. Neverthe-
less, Yices’s input language is still significantly more restric-
tive than Isabelle/HOL [25]. For instance, Yices currently
does not support parameterized datatype declarations, mu-
tual or nested recursion in datatypes, or bounded quan-
tification over sets. Most importantly, Isabelle/HOL’s and
Yices’s type systems are substantially different: While the
former has a polymorphic type system, Yices only allows
monomorphic definitions with uninterpreted types. How-
ever, we still consider Yices a suitable target for integration,

1The name ismt was chosen to avoid conflict with an already
existing smt tactic (see Section 2.2), and also to emphasize
our future plans of taking advantage of incrementality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AFM08: Automated Formal Methods ’08 Princeton, New Jersey, USA
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

and our tactic is able to translate many of Isabelle/HOL’s
extra features into Yices equivalents.

Most SMT solvers support the SMT-Lib language [9],
which is the input format used in the SMT competitions.
However, we chose to avoid translation through this medium
for two reasons. First, SMT-Lib only supports a limited
set of theories [8] which does not include datatypes, tuples,
records, etc. Second, the SMT-Lib language is not incre-
mental. That is, facts cannot be asserted or retracted in
the middle of a proof. While we do not currently make any
significant use of Yices’ native incremental API, our future
plans do include taking full advantage of this functionality.

1.2 Modes of integration
The ismt tactic invokes Yices as an external oracle, mean-

ing that it trusts the soundness of Yices and our translator.
Whenever Isabelle produces a theorem via an external ora-
cle, it attaches a trust tag to it, as well as to any other the-
orem that uses this theorem in its proof. The trust tag says
which tool was invoked, and the formula the tool proved.
Isabelle displays a “[!]” annotation on any theorem con-
taining trust tags, and the list of trust tags associated with
a theorem can also be directly queried.

Assuming Yices supports a mode in the future where ex-
plicit proof objects are returned, then we would also like to
build a proof replay mode for ismt where the proof object
is used to reconstruct a purely Isabelle proof of the theorem
that would not contain any trust tags.

2. RELATED WORK
There have been several attempts at integrating SMT

solvers into theorem proving environments. In this section
we review the most relevant ones to our work.

2.1 Integration of Yices with PVS
The Yices SMT solver can be used as an end-game solver

in PVS [6]. The translation from PVS to Yices is much more
direct than ours, since Yices and PVS share the same type
system. Similar to our work, Yices acts as a trusted solver
in PVS, whose results are not verified independently. Unlike
our tactic, however, the models generated by Yices are not
translated back to PVS notation: A failed proof attempt
by Yices is simply interpreted by PVS as a skip, having no
effect on the proof state.

2.2 The smt tactic
Barsotti et al. describes how to integrate generic SMT

solvers with Isabelle [10, 14]. Similar to our work, their tac-
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tic works as an oracle as well, i.e., no proof reconstruction is
done. Unlike our work, however, they target the SMT-Lib
language [9] as their translation medium, allowing them to
use arbitrary SMT solvers that support this common lan-
guage. Due to the limitations of SMT-Lib, however, Bar-
sotti et al. forgo expressive power, not being able to support
datatypes, case-statements, λ-expressions, tuples, records,
etc., which are the basic pillars of the Isabelle/HOL lan-
guage. We consider the expressive power afforded by the
richer internal language of individual SMT solvers well worth
the cost of building custom translators.

2.3 The rv tactic
Fontaine et al. describe how to perform proof reconstruc-

tion using proof generating SMT solvers [18]. In their work,
they use haRVey [3] to generate “proof hints,” that can later
be replayed by Isabelle via the rv tactic. While this is
precisely the technique we would like to use in the future,
currently haRVey only supports propositional logic, unin-
terpreted functions, and linear arithmetic; a rather limited
language compared to what our tactic can handle.

2.4 Integration of CVC-Lite with HOL-Light
The final related work we would like to review is the in-

tegration of CVC-lite SMT solver [1] within HOL-Light [4],
as described by McLaughlin, Barrett, and Ge [24]. In this
work, proofs generated by CVC-Lite are represented as tree-
like data structures [13], which are parsed back and replayed
in the HOL-Light theorem prover. This translation of proof
trees is especially made easy since the CVC-Lite logic is very
close to a subset of the HOL-Light logic.

McLaughlin et al. point out that to integrate the CVC-
Lite proofs about arrays, for instance, they had to extend
HOL-Light to understand CVC-Lite inference rules. While
they note that this was a trivial task in this particular case,
it is not clear how easy it would be to repeat this exercise
to other theories of interest.2

2.5 Integration of UCLID with ACL2
Manolios and Srinivasan [23] modified the ACL2 theorem

prover to provide an oracle-like facility for solving ACL2
subgoals using the UCLID [22] SMT solver. To prove an
ACL2 goal P correct, they first use an untrusted transla-
tion from ACL2 to UCLID, obtaining a UCLID formula P ′.
If UCLID proves P ′ valid, then a trusted translator from
UCLID to ACL2 is applied, obtaining an equivalent ACL2
assertion G. Finally, ACL2 itself is used to prove that G
implies P . If this final proof goes through, then they as-
sert that the original goal P must be a theorem, modulo the
soundness of the translation from UCLID to ACL2.

Note that the soundness of the translation in the other
direction, i.e., from ACL2 to UCLID, is not trusted, which
is the key advantage of their approach. Since UCLID’s logic
is much simpler than ACL2’s, a translator from UCLID to
ACL2 will be significantly simpler than a translator in the
other direction, and therefore more likely to be sound.

Recently ACL2 has added an external oracle and trust
tagging mechanism [21]. This feature could allow for a future

2 An e-mail inquiry to CVC developers revealed that
while their latest SMT solver (named CVC3) has support
for proof-generation facilities, the documentation remains
sparse [2]. Also of question is the continued support for this
feature as CVC itself evolves.

version of the UCLID oracle to be built without having to
modify ACL2’s trusted kernel.

2.6 Alternative to Monomorphisation
As described in Section 4.5, our tool monomorphizes all

occurrences of polymorphic types and constants. Couchot
and Lescuyer [15] describe an alternative encoding where
type variables and type operators are reflected at the term
level, and polymorphic constants are then “tagged” with the
reflected type instances they occur at. This encoding ends
up being significantly more compact than our monomor-
phization approach, and their benchmarks demonstrate that
Yices performs more efficiently on problems translated in
this way. One slight drawback is that the translation re-
quires a pair of quantified lemmas to be inserted into the
subgoal, which will cause Yices to report even concrete coun-
terexamples as being potentially spurious. However, this
could be easily remedied by a separate analysis of the sub-
goal’s decidability that first removes the pair of quantified
lemmas. We may consider this translation approach in a
future version of ismt.

3. HOW THE ISMT TACTIC WORKS
The ismt tactic proves theorems by having Yices prove

their negations unsatisfiable. When invoked, the ismt tactic
performs the following tasks on the topmost subgoal of the
Isabelle goal stack:

• Translate the types occurring in the formula into Yices
type declarations. This process requires monomorphi-
sation of HOL datatypes, records, etc., to map poly-
morphic operators and type variables to corresponding
monomorphic versions supported by Yices. (See Sec-
tion 4 for details.)

• Negate the subgoal and translate it to Yices. If a HOL
constant has no corresponding Yices construct, then
declare it as an uninterpreted constant of the appropri-
ate type. For instance, let isEven :: nat ⇒ bool

be a user defined HOL constant. Then, for the HOL
expression isEven (4::nat), we would generate the
following Yices translation:

(define isEven::(-> nat bool))

(assert (not (isEven 4)))

where no defining equations for isEven are added (how-
ever the user can always first insert the defining equa-
tions into the original subgoal as quantified lemmas).

• Pass the generated script to Yices. If Yices returns a
model (i.e., a set of assignments that satisfies the nega-
tion of the input), we turn that into a refutation of the
original formula. Naturally, the Isabelle proof attempt
fails at this point. (This counterexample might be spu-
rious, due to the presence of uninterpreted constants.
We will discuss this possibility in detail in Section 5.)

• If Yices determines the clauses are unsatisfiable, then
trigger Isabelle’s oracle mechanism and accept the orig-
inal subgoal formula as a (trust-tagged) theorem.

The translator makes no attempt to send existing Isabelle
lemmas to Yices. However, the user can always explicitly in-
sert lemmas into the current subgoal as additional hypothe-
ses. (See Section 5.1 for an example.)
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The following HOL entities are properly understood and
translated by the ismt tactic to Yices’s internal language.
Any other construct will be translated as an uninterpreted
constant or type:

• Types. Ground types: int, nat, bool. Basic HOL
types: polymorphic lists, option type, tuples of arbi-
trary arity, including unit. Records with polymor-
phic fields (except extensible records). User defined
datatype declarations: Both parameterized and recur-
sive variants are supported. (However, they cannot
be mutually recursive, either directly or indirectly via
nesting.) Functions: Both first-order and higher-order
functions are supported.

• Constants. Equality: =, supported polymorphically
at all types. Boolean operators: True, False, ≤, <,
−→, =⇒, ∨, ∧, ¬, and dvd. Operators:3 +, −, ×, /,
− (unary minus), div, mod, abs, Suc, min, max, fst,
and snd.

• Expressions and binding constructs: If-expres-
sions, let bindings, λ-abstractions, quantifiers (∀, ∃,
V

), case expressions (over tuples, naturals, option type,
lists, and arbitrary user defined types), function and
record update expressions.

4. EXAMPLES
In this section we will walk over a number of example uses

of the ismt tactic, demonstrating its basic capabilities.

4.1 Basics
Consider the classic excluded-middle example:

lemma "a ∨ ¬a"
by ismt

Running Isabelle on this input yields:

lemma ?a ∨ ¬?a [!]

Note that Isabelle tags the free variable a with ?, indicating
it is a schematic variable, i.e., the lemma is proven for all
possible substitutions of the variable a. Furthermore, the
lemma is displayed with a [!] annotation, indicating the
role of the oracle.

Here’s a slightly more interesting example, showing that
an odd number can not be a multiple of 2:

lemma "a = (2::int) * n + 1 −→ a 6= 2 * m"

by ismt

which will be proven by the ismt tactic directly. Note that
the type qualifier on 2, (i.e., 2::int) is necessary. Other-
wise Isabelle’s overloaded numbers would have caused this
statement to have a more polymorphic type than intended,
and the translator would have left the arithmetic operators
uninterpreted.

3The arithmetic operators (+, −, etc.), and comparisons
(<=, <) are supported both at their int and nat instances.
Use of arithmetic operators at other Isabelle numeric types
will remain uninterpreted. Also note that Yices does not
fully support non-linear arithmetic. If a non-linear expres-
sion is given to the translator it will still be translated, but
Yices might reject the input.

If the input to the ismt tactic is not a Yices-theorem, then
a counterexample will be generated. Consider:4

lemma "abs (n::int) = n"

by (ismt model: abort)

Running Isabelle on this input will yield:

*** A counter-example is found:

*** n = -1

Counterexample generation raises an interesting question
in the presence of uninterpreted constants. Consider the
following example, where we do not indicate what specific
type the expression None has.

lemma "n = None"

by (ismt model: abort)

The tactic will respond with:

*** A counter-example is found:

*** Some (ismt_const 1) = n

The counterexample uses the function ismt_const. The fol-
lowing excerpt from the generated Yices code might help
explain the need for this constant:

(define-type ’a)

(define-type option-’a

(datatype None-’a (Some-’a the::’a)))

(define n::option-’a)

(assert (/= n None-’a))

The type assigned to the HOL constant n is ’a option,
which results in a rendering of the option type at the un-
interpreted type ’a. (See Section 4.5 for details on how
datatype declarations are translated.) Yices assumes all
uninterpreted types are integers when generating models.
When the HOL counterexample is generated from the Yices
model, however, we cannot use these integers as the values of
the corresponding variables; doing so would not be type cor-
rect. Hence, we have defined an uninterpreted HOL constant
ismt_const with the type int ⇒ ’a, Such counterexam-
ples should be read such that the arguments to ismt_const

are indices into the right HOL type, where different indices
pick different values in the corresponding domain. (That is,
ismt_const should be considered an injective function.)

4.2 Anonymous functions
HOL’s λ-abstractions are compiled into their Yices coun-

terparts. Here are several examples:5

lemma "(λx::int. x+2) = (λy. 2+y)"

lemma "(λx::int. x+2) = f"

The first lemma generates the following Yices code:

(assert (/= (lambda (x::int) (+ x 2))

(lambda (y::int) (+ 2 y))))

4The model: abort flag instructs ismt to throw an excep-
tion when a model is returned by Yices. The other possi-
ble options are silent, which acts as skip; and the default
notify, which is the same as skip except it also displays the
counterexample in Isabelle’s trace buffer.
5For brevity, we will no longer show the actual call to ismt,
i.e., each lemma line should be followed by the command by
(ismt model: abort).
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which is automatically proven.
The second lemma generates the following code:

(define f::(-> int int))

(assert (/= (lambda (x::int) (+ x 2)) f))

which causes the ismt tactic to generate the following coun-
terexample:

*** A counter-example is found:

*** f -1 = 2

Note that the use of λ-expressions can trigger incomplete-
ness, though we have found this to occur rarely in practice.
(See Section 6 for details).

4.3 Tuples
HOL tuples are converted to their Yices counterparts ap-

propriately. Tuples of arbitrary arity are implemented by
right-nested tuples in HOL, and the translator uses the same
technique to represent them in Yices.

The following lemma is automatically proven:

lemma "(x, y, x) = (y, x, y) =⇒ x = y"

It generates the code:

(define-type ’a)

(define x::’a)

(define y::’a)

(assert (= (mk-tuple x (mk-tuple y x))

(mk-tuple y (mk-tuple x y))))

(assert (/= x y))

Projections fst and snd are translated accordingly:

lemma "fst t = snd t =⇒ (snd t, fst t) = t"

This lemma generates the following code:

(define-type ’a)

(define t::(tuple ’a ’a))

(assert (= (select t 1) (select t 2)))

(assert (/= (mk-tuple (select t 2) (select t 1))

t))

and is automatically proven by Yices.
Any models produced by Yices for the negation of the goal

are automatically translated back to HOL. Consider:

lemma "snd (f, f True) = False =⇒ f False = True"

which generates:

(define f::(-> bool bool))

(assert (= (select (mk-tuple f (f true)) 2) false))

(assert (/= (f false) true))

We get the following HOL counterexample:

*** A counter-example is found:

*** f True = False

*** f False = False

Notice that the components of a tuple can contain arbitrary
elements, including functions.

4.4 Let expressions
HOL let-expressions are implemented by the higher order

function Let :: ’a ⇒ (’a ⇒ ’b) ⇒ ’b, so that let x

= 1 in x + x is syntactic sugar for Let 1 (λx. x + x).
We convert these directly to Yices let-expressions. Here is
an example:

lemma "let x = (1::int) in let y = 2 in x+y = 3"

Our tactic generates the following Yices code:

(assert (not (let ((x::int 1))

(let ((y::int 2))

(= (+ x y) 3)))))

which is automatically proven.
Bound variables in a let-expression can be of arbitrary

types; the translator will ensure appropriate eta-expansion
is done to preserve Yices’ stringent function arity require-
ments, as demonstrated below:

lemma "(3::int) = (let f = (op +) 2 in f 1)"

This lemma will be automatically proven by ismt. It gener-
ates the following code:

(assert (/= 3 (let ((f::(-> int int)

(lambda (etav::int)

(+ 2 etav))))

(f 1))))

Note the eta-expansion in the definition of f to make sure
that the Yices constant + is applied to the correct number
of arguments.

4.5 Datatype declarations
One of the ubiquitous aspects of functional programming

(either in HOL or in any other functional language) is the use
of datatype declarations. The ismt tactic translates (most)
datatype declarations to their Yices counterparts. There are
several obstacles, however:

• Yices does not support parameterized or polymorphic
datatype declarations. Our translator “flattens-out”
the use of parameterized datatypes on the fly, gener-
ating individual monomorphised instances.

• Yices does not allow datatype declarations to be mu-
tually recursive, either directly (via the use of two
datatype declarations), or indirectly (via the use of
nested recursion). Such cases are detected by the trans-
lator and rejected.

4.5.1 Datatypes without parameters

Any non-parameterized datatype, recursive or otherwise,
generates an equivalent declaration in Yices.

Simple enumerations are converted to scalar declarations:

datatype Kind = Odd | Even

gets translated to:

(define-type Kind (scalar Odd Even))

Recursive types are translated accordingly:

datatype Nat = Zero | Succ Nat

gets translated to:
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(define-type Nat (datatype Zero (Succ aSucc::Nat)))

Unlike HOL, Yices requires all fields in a datatype decla-
ration to have associated accessors. The accessor aSucc ::

Nat ⇒ Nat was automatically generated in the last example
to satisfy this requirement. (The translator also allows users
to register their own custom accessors, see [17] for details.)

4.5.2 Parameterized datatypes

Each use of a parameterized datatype at a different in-
stance causes the translator to generate a new set of decla-
rations. We call this translation the process of monomor-
phisation. To illustrate, consider the following lemma:

datatype (’a, ’b) Either = Left ’a | Right ’b

lemma "Left False 6= Right (4::int)

∧ Left True 6= Right x"

causes the translator to generate the following code:

(define-type ’a)

(define-type

Either-bool-int

(datatype

(Left-bool-int aLeft-bool-int::bool)

(Right-bool-int aRight-bool-int::int)))

(define-type

Either-bool-’a

(datatype (Left-bool-’a aLeft-bool-’a::bool)

(Right-bool-’a aRight-bool-’a::’a)))

(define x::’a)

(assert (not (and (/= (Left-bool-int false)

(Right-bool-int 4))

(/= (Left-bool-’a true)

(Right-bool-’a x)))))

which is successfully proven by Yices. Note that each dis-
tinct use of the Either type caused a new datatype declara-
tion, including the case where there is a free type variable.
The names of types are used with dashes to create unique
constructor names, as in Left-bool-int or Right-bool-’a.

Recursive declarations are translated similarly:

datatype ’a Tree = Leaf ’a

| Branch "’a Tree" "’a Tree"

lemma "Leaf 3 6= Leaf (2::int)"

causes the translator to generate the following:

(define-type

Tree-int

(datatype (Leaf-int aLeaf-int::int)

(Branch-int aBranch-int1::Tree-int

aBranch-int2::Tree-int)))

(assert (= (Leaf-int 3) (Leaf-int 2)))

which is again proven unsatisfiable automatically by Yices.

4.5.3 Direct and nested mutual recursion

Mutually recursive datatypes are not supported by the
translator, due to the fact that Yices has no support for
such constructs and there is no simple translation that can
be applied in such cases. An example of such a declaration
is the following recursive pair of datatypes:

datatype ’a AExp = Var ’a | BExp "’a AExp"

and ’a BExp = And "’a AExp" "’a AExp"

If a lemma involving one of the types AExp or BExp is sent
to ismt, it will throw an exception rejecting the mutually
recursive datatype declaration.

Nested recursion is another source for the same problem:

datatype ’a Term = Variable ’a | App "’a Term list"

In this case, the recursion for the Term datatype happens at
the type ’a Term list instead of the required type ’a Term.
Similar to the above case, nested recursive declarations will
be rejected by ismt as well.

4.6 Case expressions
In HOL, every datatype declaration is accompanied by a

corresponding case-construct to take the constructed terms
apart. Unfortunately, Yices does not support case expres-
sions natively. However, Yices does provide recognizers for
each constructor in a datatype declaration, and we take ad-
vantage of this facility to compile down HOL case-expressions
to a cascaded sequence of if-then-else expressions. Using
this technique, we not only support case expressions over
built-in types such as tuples, booleans, and lists, but also
user-defined datatypes as well. To illustrate, consider the
following lemma:

lemma "fst tp = (case tp of (x, y) ⇒ x)"

which can automatically be proven by ismt. It generates
the following code:

(define-type ’a)

(define-type ’b)

(define tp::(tuple ’a ’b))

(assert (/= (select tp 1)

(((lambda (x::’a) (lambda (y::’b) x))

(select tp 1)) (select tp 2))))

Note that there is no explicit if-statement used in this case,
since there is exactly one way to take a tuple apart.

Case expressions over naturals demonstrates the use of
if-expressions:

lemma "i+1 = (case (i::nat) of

0 ⇒ 1

| Suc m ⇒ m+2)"

Yices can automatically prove the generated assertion for
this case:

(assert

(/= (+ i 1)

(if (= i 0)

1

((lambda (m::nat) (+ m 2)) (- i 1)))))

HOL lists are slightly more interesting. Consider:

lemma "case [True, False] of

[] ⇒ True

| (y#ys) ⇒ y"

This lemma is automatically proven, generating the code:

(define-type

list-bool

(datatype Nil-bool (Cons-bool hd::bool

tl::list-bool)))

(assert
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(not

(let

((casev::list-bool

(Cons-bool true (Cons-bool false

Nil-bool))))

(if (Nil-bool? casev) true

(((lambda (y::bool)

(lambda (ys::list-bool) y))

(hd casev))

(tl casev))))))

The translator uses a let-expression to wrap the test ex-
pression around (unless it is already a variable), as demon-
strated above using the variable casev. This aids greatly in
readability as it avoids duplicating the expression later on.

4.7 Records
HOL record types are translated into Yices records. HOL’s

extensible records are not supported, however, since there is
no corresponding Yices construct.6

Consider the HOL lemma:

record pt = pt_x :: int

lemma "pt_x (| pt_x = 3 |) = 3"

We generate the following code:

(define-type pt (record pt_x::int))

(define-type unit (scalar Unity))

(assert (/= (select (mk-record pt_x::3) pt_x) 3))

(Note the appearance of the unit type in the output, which
seems spurious. It, in fact, corresponds to the more field of
the HOL record.)

Parameterized and polymorphic fields are converted as
usual, by monomorphising them appropriately:

record (’a, ’b) pt2 =

pt2_x :: ’a

pt2_y :: ’b

pt2_z :: int

lemma "pt2_x (| pt2_x = v, pt2_y = q,

pt2_z = s |) = v"

The generated Yices code is:

(define-type ’a)

(define-type ’b)

(define-type pt2-’a-’b

(record pt2_x::’a pt2_y::’b pt2_z::int))

(define-type unit (scalar Unity))

(define v::’a)

(define q::’b)

(define s::int)

(assert (/= (select (mk-record pt2_x::v

pt2_y::q pt2_z::s)

pt2_x)

v))

HOL and Yices records are both extensional, allowing us
to prove record equality theorems. Consider the following
lemma that uses the pt2 record as defined above:

6We plan to overcome this limitation in a future version
by “flattening,” i.e., either by compiling HOL’s extensible
records to Yices records that contain all the relevant fields,
or by compiling them into nested records.

lemma "(| pt2_x = a, pt2_y = b, pt2_z = a+b |)

= (| pt2_x = b, pt2_y = a, pt2_z = c |)

=⇒ a = b & c - b = a"

It generates the following additional code:

(define a::int)

(define b::int)

(define c::int)

(assert

(= (mk-record pt2_x::a pt2_y::b pt2_z::(+ a b))

(mk-record pt2_x::b pt2_y::a pt2_z::c)))

(assert (not (and (= a b) (= (- c b) a))))

which is proven automatically by Yices.
Finally, counterexamples will be translated back to their

HOL counterparts:

record fr =

f :: "int => int"

lemma "r1 = (r2 :: fr)"

A call to ismt generates the following counterexample:

*** A counter-example is found:

*** (| f = f r1 |) = r1

*** (| f = f r2 |) = r2

*** f r1 1 = 2

*** f r2 1 = 3

4.8 Function and record updates
HOL’s function and record update notations are fully sup-

ported by the translator. Consider the following trivial func-
tion update theorem:

lemma "(f(i:=n)) i = n"

This lemma is successfully proven. It generates the following
code:

(define-type ’a)

(define-type ’b)

(define f::(-> ’b ’a))

(define i::’b)

(define n::’a)

(assert (/= ((update f (i) n) i) n))

Record updates are similarly translated to their Yices
equivalents.

4.9 Quantifiers
Quantifiers are a soft spot for SMT solvers, as they typi-

cally render the underlying algorithms incomplete. (We will
return back to this point in Section 6 in detail.)

Our ismt tactic translates both meta- and object-level Is-
abelle quantifiers into Yices’ input format. One optimization
is that top-level universally bound variables are skolemized
into top-level Yices uninterpreted constants. To illustrate,
consider the following trivial lemma:

lemma "
V

x. (∀y. (x = x ∧ y = y))"

When ismt is invoked, it generates the following code that
contains no quantifiers at all:

(define x::’a)

(define y::’b)

(assert (not (and (= x x) (= y y))))
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Needless to say, Yices deduces unsatisfiability instantly.
When quantifiers are nested, however, the translator can

no longer compile them away. In such cases, we simply trans-
late them to their Yices equivalents. Consider the lemma:

lemma "
V

x. [[ (∀y. p y =⇒ q y) ]] =⇒ p x −→ q x"

This lemma is proven successfully by Yices. The generated
code is:

(define-type ’a)

(define x::’a)

(define p::(-> ’a bool))

(define q::(-> ’a bool))

(assert (forall (y::’a) (=> (p y) (q y))))

(assert (not (=> (p x) (q x))))

Note, in particular, how the parameter x becomes a top-
level definition, while y remains forall bound in the Yices
translation.

The treatment of the ∃ binder is similar, except that top-
level occurrences cannot be compiled away to top-level def-
initions. Here is a simple example to illustrate:

lemma "∃x. x > (0::nat)"

This lemma is proven automatically by Yices. It generates
the code:

(assert (not (exists (x::nat) (< 0 x))))

The translator does not support the unique-existence quan-
tifier (∃!). The bounded versions of the quantifiers (Ball and
Bex) are not supported either, and neither are the Hilbert’s
choice (ǫ), and the Least binders. Uses of these constructs
will remain uninterpreted during the translation process. (It
might be possible to support bounded quantifiers through
Yices’ predicate-subtyping. However, we currently refrain
from this since Yices does not ensure type-correctness when
predicate-subtyping is used. In particular, it is possible to
define empty types in Yices, and exploit these to prove bogus
theorems.)

5. DEALING WITH FALSE ALARMS
Due to the fact that certain constants will remain uninter-

preted during the translation, the ismt tactic can come up
with bogus counterexamples. In this section we consider two
particular instances of this problem and discuss mitigations.

5.1 Recursive uninterpreted constants
Although non-recursive uninterpreted functions can be

dealt with by unfolding their definitions before calling ismt,
a different approach is needed when the functions are re-
cursively defined. To illustrate, consider the function len

below, which computes the length of boolean lists:

consts len :: "bool list ⇒ nat"

primrec

"len [] = 0"

"len (x#xs) = 1 + len xs"

Consider the following lemma:

lemma "len [True, False] = 2"

which generates the following code:

(define-type list-bool

(datatype Nil-bool

(Cons-bool hd::bool tl::list-bool)))

(define len::(-> list-bool nat))

(assert (/= (len (Cons-bool true

(Cons-bool false Nil-bool)))

2))

Yices provides the following counterexample:

*** A counter-example is found:

*** len [True, False] = 3

which is clearly bogus. The problem arises since we have
not told Yices anything about the function len, leaving it
uninterpreted.

There are clearly easier ways to prove this lemma in Is-
abelle, (in fact, a simply application of auto would suffice),
but our goal is to show how additional quantified hypothe-
ses can be added so that ismt can prove the lemma success-
fully. In this case, all we need to do is to assert the pattern-
matching rewrite rules for len as extra Isabelle lemmas:

lemma len0: "len [] = 0"

lemma len1: "len (x#xs) = 1 + len xs"

Both of these lemmas can be proven by Isabelle’s auto tactic.
We can now use these additional facts to guide Yices:

lemma "len [True, False] = 2"

apply (insert len0 len1)

The goal state after the insert tactic looks like:

[[ len [] = 0;
V

x xs. len (x # xs) = 1 + len xs ]]
=⇒ len [True, False] = 2

When we apply ismt at this proof state, the generated Yices
code looks like:

(define-type

list-bool

(datatype Nil-bool (Cons-bool hd::bool

tl::list-bool)))

(define len::(-> list-bool nat))

(assert (= (len Nil-bool) 0))

(assert

(forall (x::bool)

(forall (xs::list-bool)

(= (len (Cons-bool x xs))

(+ 1 (len xs))))))

(assert (/= (len (Cons-bool true

(Cons-bool false Nil-bool)))

2))

which is easily decided by Yices to be unsatisfiable, allowing
us to conclude that the original formula is indeed a theorem.

Unfortunately, not all false alarms can be dealt with us-
ing these techniques. There will invariably be certain con-
structs that will go uninterpreted during the translation.
(Consider, for instance, more complicated recursive defini-
tions where finding such “helper lemmata” would amount to
proving the original theorem. Or HOL constructs such as
Hillbert’s choice operator that has no corresponding “exe-
cutable” counterpart that we can use in the simplification
process.) While these techniques can be helpful, our experi-
ences with the ismt tactic suggest that such cases are best
dealt within the theorem proving framework of Isabelle, in-
stead of relying on a backend SMT solver.
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6. INCOMPLETENESS
SMT solvers typically support richer languages/logics than

they can actually decide. For instance, it is well known
that quantifiers (i.e., ∀, ∃), and λ-expressions make logics
incomplete. In such cases, the underlying solver typically
returns a satisfying model as well, but there is a chance that
this model might be bogus. (Such problems are reported by
Yices as “unknown” to indicate this possibility.)

To illustrate, consider:

lemma "((λ(x::bool). f x) = (λx. True)) =⇒ f x"

The generated file contains (excerpt shown below):

(assert (= (lambda (x::bool) (f x))

(lambda (x::bool) true)))

(assert (not (f x)))

We get the following “potential” counterexample from ismt,
which is actually bogus in this particular case:

Potential HOL counterexample:

x = False

f False = False

Notice that incompleteness will never cause ismt to prove
a non-theorem. Rather, it might prevent it from proving a
valid assertion. In other words, soundness is never at risk
due to this limitation.

7. EXPERIMENTS
Having discussed the ismt tactic in detail, we will now

briefly turn to our use cases for it at Galois, providing ex-
amples from various projects, both past and present.

Galois is building several cross-domain web service ap-
plications that provide strong security guarantees about the
confidentiality of data across separate security domains. For
example, our Trusted Services Engine (TSE) is a multi-level
secure filestore providing a single common repository for files
and directories, where each user’s view of the file system is
restricted according to that user’s security level.

Most of the TSE is written in the Haskell functional pro-
gramming language, which provides a number of security
benefits. However, we implemented the most security-critical
cross-domain portion of the TSE as an 800-line C program,
to eliminate any dependency on Haskell’s runtime system.
In order to attain the highest government security certifica-
tions for the TSE, we decided to formally model this compo-
nent in Isabelle and verify its memory safety and information
flow properties [19]. Although the verification was success-
ful, discovering the required inductive safety invariants and
view relations was very labor-intensive.

7.1 C program verification
To speed up proofs for future cross-domain C components

we have prototyped a monadic-style sequential semantics for
a larger subset of C, called SeqC. Although SeqC’s semantics
still only covers a small portion of the C standard, it in-
cludes general while loops, the non-local control flow state-
ments return, break, and continue, access control permis-
sions for each memory byte, the ability to take addresses of C
globals, locals, and malloc’ed memory, nondeterministically-
modeled C functions such as malloc and free, and gen-
eral assume and assert statements. SeqC also contains a
non-recoverable Err state that is transitioned into upon any

memory-safety violation or assertion failure. Memory-safety
is thus defined as unreachability of Err, with assume state-
ments first pruning out all execution paths that don’t satisfy
a program’s environmental assumptions.

We have proved Hoare logic rules for SeqC, built a simple
verification condition generator (VCG) as an Isabelle tactic,
and run some initial experiments verifying memory-safety of
small example C programs. So far we have found the ismt

tactic to be quite helpful not only in proving the verifica-
tion conditions, but also for debugging too-weak precondi-
tions and loop invariants by inspecting the counterexamples
returned. To keep the counterexample sizes tractable, we
initially put small concrete bounds on program parameters
such as array sizes. We then used selected rewrite rules and
a high-level Isabelle tactic to automatically expand away
the (now bounded) quantifiers and recursive functions in
the formula before calling ismt. Once we had found the ap-
propriate rewrites, preconditions, and loop invariants, the
verification of our example programs was completely auto-
matic, thanks to the versatility of our ismt tactic and the
power of Yices.

To discover the necessary rewrite rules, we first had to fig-
ure out which part of the verification condition ismt couldn’t
solve. We wrote an Isabelle proof script that used case-
splitting tactics to eliminate any rigid quantifiers (i.e. quan-
tifiers that didn’t require any witnesses to be invented), as
well as top-level conjunctions and disjunctions in the proof
goal. The result was one or more smaller subgoals that were
jointly equivalent to the original proof goal. Then, we used
the ismt tactic on each subgoal until it found one that failed.

7.2 Parameterized program verification
We have also used the ismt tactic in verifying a string-

copy routine where the source string can either be on the
heap or the C stack, with a precondition that the string
length is not larger than the destination string buffer, nor
aliased to the destination buffer or any of the program’s local
variables.

When we tried to re-run the verification where the source
and destination buffer sizes were not fixed beforehand, the
resulting goals required Yices to reason about quantified as-
sertions. Unfortunately, we have found that Yices’ quantifier
instantiation heuristics were not up to the task. Further-
more, Yices currently does not allow users to specify their
own domain-specific quantifier instantiation term patterns.

To illustrate the issues we encountered, below we have
defined vcg, a simplified version of one of the parameterized
subgoals generated by our case-splitting tactic that Yices
was not able to solve, even with the appropriate quantified
lemmas.7

definition

vcg :: "addr ⇒ addr ⇒ addr ⇒ int ⇒
(addr ⇒ byte) ⇒ bool" where

"vcg src dst s_ptr n h

= (let s = h s_ptr;

d = dst - src + s;

h’ = h(d := h s, s_ptr := h s_ptr + 1)

in ( src ≤ s ∧ is_str s (src + n - s) h

∧ ¬ s_ptr mem (str_addrs s n h)

7The combined Isabelle and ismt proof of this formula is
part of a self-contained example file vcg.thy, included in
our ismt release [5].
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∧ ¬ d mem (str_addrs s n h)

∧ h s 6= 0

−→ ¬ s_ptr mem (str_addrs (s+1) n h’)))"

Parameter src points to the start of the source string
buffer, dst points to a destination buffer of size n, and s_ptr

is &s, the address of the C variable s, which itself points to
the next byte to copy from the source string. The variable
h is the contents of the memory heap at the top of the loop.
In the formula we have defined d to point to the destination
byte that *s will be copied to, and h’ to be the updated
heap at the bottom of the current loop iteration where *s

has been copied to *d with s incremented.
The function vcg mentions three recursively-defined func-

tions. (i) The predicate is_str has type addr ⇒ int ⇒
(addr ⇒ byte) ⇒ bool; is_str p n h is true whenever p
points to a null-terminated string in heap h that is no more
than n bytes long, including the null byte. (ii) The func-
tion str_addrs has type addr ⇒ int ⇒ (addr ⇒ byte)

⇒ addr list. The call str_addrs a n h returns a max-
length n list of contiguous addresses in h starting at a up
to and including the first address pointing to a null byte (if
any). It represents the set of addresses that can alias the
string. And (iii), the infix binary relation _ mem _ :: ’a

⇒ ’a list ⇒ bool is list membership. The types addr

and byte are synonyms for int.
To make this example easier for ismt, we manually re-

moved from vcg any hypotheses that were irrelevant to the
conclusion. The remaining hypotheses are: At the top of
the while loop s points to a string that fits within the n-byte
source buffer src, &s and d are not aliased to the string, and
*s is not null. The conclusion to verify is that at the end
of the while loop &s is still not aliased to the string now
pointed to by s. (This could happen if the while loop over-
writes the source string’s null byte.)

Discovering quantifier instantiations. We needed to
give ismt four quantified lemmas for it to verify the for-
mula. However we had to manually instantiate the follow-
ing lemma with the substitutions {p’ ← d, x ← h s} and
{p’ ← s_ptr, x ← s + 1}, to keep ismt from timing out.
The lemma variables p, n, and h remained quantified. With
these instantiations, ismt is able to verify vcg in less than a
second.

lemma str_addrs_simp:

"¬(p’ mem str_addrs p n h) ∨ ((h p’=0) = (x=0))

=⇒ str_addrs p n (h(p’ := x)) = str_addrs p n h"

To find the required lemmas and instantiations, we started
a manual backchaining process, where we asserted additional
formulas as new Isabelle subgoals that we believed to be
true. We confirmed this by running ismt on vcg, with the
additional formulas as extra hypotheses. We then recur-
sively followed this debugging process on each new Isabelle
subgoal, until it was clear what extra lemma or instantiation
was needed. (The file vcg.thy included in the distribution
contains the additional formulas we used, specifically in the
proof of detailed_vcg_lemma [5].)

The counterexamples generated by ismt were helpful for
debugging these subgoals if they were small enough. How-
ever, we often found it quicker to ignore the counterexample
and instead inspect the abstract Isabelle subgoal. This was
because Yices would typically assign multiple variables the

same concrete value in the counterexample, e.g., x = 3 ∧
y = 3. If the counterexample also asserted a formula (P 3)
that we knew to be false, we couldn’t then tell whether Yices
had chosen to satisfy (P x) or (P y). But this information
was usually necessary to determine which quantified lemma
would eliminate the counterexample for all possible values of
x or y in the subgoal. It would be very helpful to have either
a Simplify-style label capability that returned which sub-
propositions actually contributed to the counterexample, or
else a command to return an“abstract”counterexample that
displays the occurrences of free variables in formulas and
subterms, rather than substituting in their concrete values.

8. TIPS FOR USING ISMT
The following list summarizes a number of tips reflecting

our experiences with the ismt tactic.

• Avoid nested quantifiers. The translator will generate
separate top-level assert statements for each quanti-
fied hypothesis found in the subgoal. This is preferable
as it seems to enable more of Yices quantifier instan-
tiation heuristics. Try to lift quantified formulas into
top-level hypotheses whenever possible.

• Restrict arithmetic to nat’s and int’s. While Isabelle
allows arithmetic over arbitrary types (using axiomatic
type-classes), the Yices backend is not rich enough to
understand such constructs. When such goals are sent
to ismt, it is very likely that a bogus counterexample
will be returned, since these number types will remain
uninterpreted. Try to restrict arithmetic to nat’s and
int’s only, which are fully supported.

• Watch for “uninterpreted” constants. Pay close atten-
tion to the counterexamples returned by ismt.8 It is
likely that the falsifying model will be bogus due to un-
known facts about these constants. If possible, apply
the techniques described in Section 5 to resolve such
cases.

• Be type-specific, especially when using records. Isabelle
rewrite rules regarding records tend to be too polymor-
phic, applying to a variety of record types. Since the
translator does not support extensible records (see Sec-
tion 4.7), such rewrite rules can create subgoals that
are unnecessarily more general than needed. When-
ever possible, provide sufficient type annotation in the
HOL specification to restrict the record types appro-
priately.

• Dealing with“potential” counterexamples. Heavy use of
quantifiers tend to render the underlying SMT solvers
incomplete. Isabelle’s safe tactic might help in cases
where such quantifiers can be eliminated.

9. CONCLUSIONS
In this paper, we have described our Isabelle ismt tactic.

The tactic provides an automated solver for a subset of HOL,
by translating them appropriately to Yices. As a proof-of-
concept work, the ismt tactic demonstrates that it is quite

8To aid in this process, ismt will always print the list of un-
interpreted constants that are used in the counterexample.
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feasible to build highly useful interfaces to modern off-the-
shelf SMT solvers from within interactive theorem proving
assistants.

Not every HOL theorem can be proved by ismt. Logics
of modern SMT solvers are deliberately weaker, trading ex-
pressive power for decidability. Still, we have found that the
use of the “uninterpretation” technique to translate literally
all HOL theorems to such logics pays-off very nicely in prac-
tice. Many tedious theorems can be proven “with the push
of a button.”

We also have several items on our Yices wish-list, as well
as enhancements we would like to make to ismt, as we dis-
cuss below.

Quantifier instantiation term patterns. As described
in Section 7.2, Yices’ in-built quantifier instantiation heuris-
tics did not always work for our use cases. The Simplify
and Z3 SMT solvers support quantifier instantiation term
patterns, where the user can attach a set of instantiation
patterns to any quantified assertion [12]. Each instantiation
pattern contains a set of term patterns, and a substitution
over the term patterns’ free variables. If in its proof search
the SMT solver finds a set of subterms that jointly matches
the term patterns, it will instantiate the quantified asser-
tion according to the substitution and add it to the proof
context.

Instantiation patterns can be used to enable systems of
rewrite rules by inserting each rewrite as a quantified equal-
ity and an instantiation pattern that matches the left-hand-
side of each rule. Instantiation patterns can also implement
forward- or backward-chaining inference rules, by having the
term pattern match either the hypotheses or conclusion of a
quantified implication.

For instance, in Section 7.2, we could have given a single
instantiation pattern for lemma str_addrs_simp that would
have solved the subgoal as well as related subgoals:

term_patterns: "¬(p’ mem str_addrs p h h)",

"str_adders p n (h(p’ := x))"

substitution: p ← p, p’ ← p’, n ← n, x ← x.

which would have simplified the proof significantly.

Abstract counterexamples and call-back tactics. The
ability to generate counterexample information is helpful,
especially when the counterexamples are small enough (i.e.
have only a few free variables and uninterpreted constants).
However, we think it would be much more useful to have a
Yices command to return an abstract counterexample for-
mula, as described in Section 7.2.

Abstract counterexamples would be especially useful in
conjunction with Yices’ incremental API. In particular, in
future work we want to allow the user to attach Isabelle
call-back tactics that are invoked on the abstract counterex-
amples produced by Yices. The call-back tactics would then
analyze each counterexample and return lemmas that either
refute it or infer additional facts such as equalities. These
lemmas would then be incrementally asserted into Yices’
current proof context the proof search would resume.

This process would continue until Yices is either able to
prove the original formula or else produce a counterexample
that the call-back tactics could not infer anything about.
Call-back tactics would thus allow the user to safely write
domain-specific quantifier instantiation heuristics that could

be more powerful than a fixed collection of term patterns.
A further Yices optimization would be to export the E-

graph matching API. Users could then register their own
term patterns. When a pattern matches during the proof
for the first time, Yices would immediately suspend and re-
turn references to the matched subterms. There would also
have to be commands to query the current proof context
(partial model). Exporting the E-graph matcher would also
allow call-back tactics to be triggered early, without having
to wait for a full counterexample to be built.

Modes of integration. The only mode of integration we
have investigated in this work is the oracle mode; where the
backend solver and the bridge code is blindly trusted. In
order to stay within the pure-LCF style, a proof-generating
backend solver, and a proof-replaying (or proof-checking) in-
terface is needed.

Integration with other SMT solvers. The ismt tactic
has been designed such that other solvers can be plugged
in by providing appropriate translators. Currently, we only
have a backend for Yices, however. Having translators for
multiple backends would make our tactic more useful in the
long run, as one can pick the best solver for the task at hand
as appropriate. It would of course simplify matters greatly
if there was a common SMT language that we could target
once and for all. Although SMT-Lib would seem to be a
natural target, it currently does not satisfy our needs. In
particular having support for recursive datatypes is essen-
tial. Also support for an incremental API and a counterex-
ample format would be very helpful. Grundy et al. provides
a nice desiderata for such a specification language [20].

Support for further HOL constants. Currently only a
subset of HOL constants are “interpreted,” (those we found
useful in our own experience). While this subset is fairly
large, supporting more constants would be useful. In par-
ticular, devising a more general scheme to translate all non-
recursive HOL definitions to Yices equivalents would be de-
sirable. Paired with a simple mechanism to allow users to
indicate which constants should be translated, the ismt tac-
tic can act as a powerful tool in custom theory development.

Support for further HOL constructs. The translator
currently does not support extensible records. Also, ratio-
nals and other numeric types (i.e. those other than int

and nat) go uninterpreted during the translation as well.
Adding support for these constructs might prove useful in
certain application areas.

Parallel proof processing. Our ismt implementation
does not support Isabelle’s recent multi-core code architec-
ture changes that support parallel proof processing. Thus
ismt must be called in a single-threaded context. Support-
ing parallel proofs where each thread might call ismt inde-
pendently would be a nice addition.
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Availability

Our ismt tactic, along with a user’s guide and other sup-
porting material is freely available on the internet with a
permissive BSD-style license [5].
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ABSTRACT
Small embedded computing devices such as smart sensors re-
place simple and straightforward analogue devices in indus-
trial applications, extending their functionality to provide
additional configurability and features. They are simpler to
understand and deploy than programmable controllers, but
nevertheless bring a high level of hidden complexity in the
form of their embedded software, microcontroller and inter-
nal storage. As part of an ongoing series of projects looking
at gaining confidence in the correctness of these devices, we
have attempted correctness proofs of parts of a real device.
We have had considerable success applying the verification
tool Caduceus to this industrial code with minimal modifi-
cations. In this paper, we summarise the approach we have
taken, our results, and our opinions about the current state
of the available tools.

Categories and Subject Descriptors
F.3.1 [Information Systems Applications]: Specifying
and Verifying and Reasoning about Programs—Mechani-
cal verification; C.3 [Computer Systems Organization]:
Special-purpose and application-based systems—Real-time
and embedded systems

General Terms
Experimentation

Keywords
Automatic verification, Caduceus, smart sensors

1. INTRODUCTION
“Smart” devices such as smart sensors are specialised em-
bedded computer devices which reproduce the functionality
of traditional analog industrial transmitters and alarms. A
smart sensor could interface a thermocouple temperature
probe to a standard 4–20mA transmission line, while pro-
viding scaling and linearisation of the signal, and rate-of-

change and level alarms on separate outputs. These spe-
cialised but flexible devices are the subject of considerable
interest in the nuclear industry at the moment, due to their
ability to directly replace simple and straightforward ana-
logue devices, while extending their functionality to provide
additional configurability and features.

Smart sensors present users with the usual problems of de-
ploying computer-based devices in safety-critical applica-
tions: testing provides insufficient confidence in the correct
behaviour of the device, but manufacturers are unwilling to
commit to formal development methods to achieve demon-
strable correctness. We are involved in the alternative ap-
proach of trying to provide maximum post-hoc confidence
in the device’s behaviour at minimum cost.

Adelard has been fortunate in obtaining the source code of
a widely-used smart sensor, which we have been using as
a case study for a number of research projects for the nu-
clear industry. Smart sensors turn out to be particularly
amenable to several verification techniques due to the rela-
tive simplicity of their core functionality.

In this paper, we describe our experiences with the auto-
mated verification tool Caduceus [7] in mechanising the ver-
ification of part of this code. This is code that, in the past,
has turned out to be challenging for analysis tools, as it has
not been written with verification in mind. The code is writ-
ten for compactness, not ease of analysis; on the other hand
it is functionally fairly straightforward, making it amenable
to formal specification.

1.1 The Caduceus/Why tools
Why [7] is a verification condition generator which oper-
ates on a specialised functional language. It is capable of
generating verification conditions for a wide range of proof
assistants (including, Isabelle, PVS and Coq) and decision
procedures (including Yices, Z3 and CVC3), and provides a
number of useful features including a graphical interface for
executing and collating results from several decision proce-
dures simultaneously.

Why is packaged with Caduceus, a front-end for verifying
C programs, and Krakatoa, a front-end for verifying Java
programs. Both tools adopt a JML-like syntax for adding
preconditions, postconditions and invariants as inline com-
ments in the code (see [4] for more details on JML).
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Caduceus is particularly significant, as there are few formal
verification tools which can accept significant subsets of C.
We discuss how we worked around the remaining limitations
of Caduceus’ C parser in Section 2.2.

2. THE SMART SENSOR EXAMPLE
The commercial off-the-shelf smart sensor which has been
the subject of this case study is the latest in a line of similar
devices from the same manufacturer1. The device is capa-
ble of reading a process variable from a variety of sources
including temperature sensors, potentiometers, and current
sources. Profiles for several types of sensor are built in to the
preprocessing code. The device has limit and rate-of-change
alarm outputs, as well as a scaled and linearised analog out-
put, and it is configurable through an interactive menu and
via a serial port.

In an earlier research project, we carried out a manual for-
mal proof of the “core” of the smart sensor software, follow-
ing [9]. The intention of restricting the proof to the core
of the software was both to reduce costs and to focus ef-
fort on the most critical part of the code. In addition to
the usual risk of incorrect specifications, there are two risks
with this approach: unidentified faults in the unexamined
code, and mistakes in the proof itself. A later project used a
series of non-interference arguments to justify not requiring
a detailed proof of the remaining code. The menu-driven
configuration interface in particular was subject to a novel
correctness argument [3] based on the claim that the menu
only set configuration variables to the values chosen by the
user.

The core code consists of four functions and roughly 150
non-comment lines of code.

Manual proof turns out to be quite efficient for the type of
code in the case study, but it is unlikely to scale well to
larger systems, especially as one of the main costs was in
presenting the proofs for the client. It is important not to
overlook the potential for mistakes to be made in the proof,
and how hard it is to review this type of work. In contrast,
applying theorem provers can be quite time consuming, but
has the advantage of repeatability and the relative assurance
of correctness.

The Caduceus/Why tool set has another attraction for the
nuclear industry in particular: diversity of solvers. Diver-
sity (separate implementations of the same functionality) is
a well-accepted technique for producing high-reliability sys-
tems, so the prospect of diverse backends to Why improving
the confidence in the verification outcome was met with en-
thusiasm by our clients.

2.1 Developing specifications
Although we had access to the software design documents for
the case study, constructing appropriate specifications was
something of a challenge: no formal specification was given
in the documentation. We were able to construct a plausible
set of specifications from the user documentation, design
documents, code comments and, in some cases, the code

1Unfortunately, commercial sensitivities prevent us from be-
ing able to identify the device or the manufacturer.

itself. Developing the specification took a sizable fraction of
the manual proof time.

The core code makes the following transformations to the
process variable T :

Trimming: Adjust the internal representation of the pro-
cess variable to match the physical value—intended as
a calibration function. There are four expected out-
comes:

1. If single-point trimming is enabled,
T ′ = T + T ′

l − Tl

2. If two-point trimming is enabled,

T ′ = (T − Tl)
T ′

u−T ′

l

Tu−Tl
+ T ′

l

3. If two-point trimming is enabled, but the unit is
misconfigured (Tu = Tl), report a divide-by-zero
error, and set T ′ = T

4. If trimming is not enabled, T ′ = T

where variables Tu, Tl, T
′

u, T ′

l are user-configurable con-
stants indicating the upper and lower input and output
values.

Scaling: Ostensibly the same function as trimming, but
with a different presentation to the user: it is intended
to convert the internal representation to the user’s cho-
sen units. Although the specification is similar, the
code is quite different from the trimming function.
Scaling has the additional function of clamping the
output to a pre-defined valid range. There are three
expected outcomes:

1. If scaling is enabled,

T ′ = (T − Tf )
T ′

f−T ′

z

Tf−Tz
+ T ′

f and Tmin ≤ T ′ ≤ Tmax,

or T ′ = Tmin, or T ′ = Tmax

2. If scaling is enabled, but the unit is misconfigured
(Tf = Tz), report a divide-by-zero error, and set
T ′ = max(min(T, T ′

max), T
′

min)

3. If scaling is not enabled, T ′ = T

where variables Tf , Tz, T ′

f , T ′

z are user-configurable con-
stants indicating the full-scale and zero-scale input and
output values, and T ′

max and T ′

min are the maximum
and minimum permitted results.

Linearisation: As a more flexible alternative to scaling,
the sensor can be programmed with a “linearisation”
curve allowing arbitrary functions to be applied to the
process variable. Linearisation arrays L (giving the
input values) and L′ (giving the output values) are
defined by the user. The code searches for n such that
either

• L[n − 1] ≤ T < L[n] (interpolation is applicable)

• L[n] < T ∧ n = |L| (upper range extrapolation is
applicable)

• T < L[n − 1] ∧ n = 1 (lower range extrapolation
is applicable)
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and applies the transformation

T ′ = (T − L[n − 1])L′[n]−L′[n−1]
L[n]−L[n−1]

+ L′[n − 1],

raising a divide-by-zero error if L[n] = L[n − 1].

The search part of the linearisation function is imple-
mented as a binary search, which narrows the range
of indices to 10, followed by a linear search to find the
exact position, so we were required to generate invari-
ants for these loops in addition to the specification (we
did not attempt to prove termination in this case).

2.2 Adapting source code
Caduceus acts directly on C source code, but necessarily
has some restrictions on the code that it accepts: it does
not support strings, unions or gotos. We therefore had to
make small modifications to the case study source code so
that Caduceus could handle it.

Any changes to the code which is to be verified raise the
question of traceability: are the results of verifying the mod-
ified code still applicable to the original code? We were able
to (informally) argue that each of our changes were small
enough to not be a problem, but this may be more difficult
on larger and more complex code bases.

The code changes required were quite straightforward, and
are described below.

2.2.1 References to unnecessary header files
The code includes references to stdio.h and math.h:

#include <stdio.h>

#include <math.h>

These header files seem to have been included out of habit—
there is no reference to any of the defined functions or macros
in the code, and the code continues to compile without the
includes. As the headers use types that cannot be handled
by Caduceus, we removed both includes.

2.2.2 Version control string
A common idiom when keeping source code in a version
control system is to include a string constant in the source
which is automatically populated by the version control sys-
tem, providing traceability even for the binary.

const char *VersionString = "VER 1.1 ";

This string constant is never read by the code, so can be
removed.

2.2.3 Replace direct memory accesses with arrays
Arbitrary memory accesses are inevitably prolematic. The
sensor software uses an in-memory table (actually, in-memory-
mapped-EEPROM) for the custom linearisation function:

float ReadPntVal(char PntNo, int Base)

{

float *Address;

Address = (float *)(Base + ((int)PntNo * 4));

return *Address;

}

We can model this as an array lookup:

float LinearisationTable[2048];

[...]

/*@ ensures

\result == LinearisationTable[PntNo + Base]

*/

float ReadPntVal(char PntNo, int Base)

{

return LinearisationTable[PntNo+Base];

}

Conveniently, the base addresses used in the code are close to
the beginning of the memory space, so we can simply model
an 8Kb sequence of floats positioned at the start of memory.
If the array LinearisationTable were actually stored at the
start of memory, the two definitions of ReadPntVal above
would be equivalent, due to the way C is defined (see 6.5.2.1
of IEC/ISO 9899 [8]).

2.2.4 Remove use of unions from LineariseValue
This union structure is used as the data type for linearisation
table entries:

union FloatToByte

{

BYTE B[4];

float F;

long L;

};

This allows for data type conversions to be performed away
from the watchful eye of the C type checker. It is only used
once:

if ((LinearPtEX.L == 0xffffffffL) ||

(LinearPtEY.L == 0xffffffffL))

{

ErrorStatus |= ERROR_BAD_CUSTOM_CURVE;

break;

}

If we remove this block, all remaining accesses to variables
of type FloatToByte are to the float member only; we can
therefore replace this data type with an ordinary float.

This is the only behaviour-changing modification that we
made, since we have removed the ability to detect certain
types of corrupted table. In fact, this condition seems to
be intended to detect an uninitialized EEPROM; if we take
appropriate configuration as a precondition for the analysis,
the code can be safely ignored.
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2.2.5 Remove all unions
The union types defined in the other header file are not
used in the analysed code (after making the replacement
described above). It is therefore safe to remove all union
type definitions.

2.3 Developing annotations
Having already conducted a manual proof of this code, we
had already developed pre- and postconditions for each func-
tion. These needed to be translated into the annotation lan-
guage for Caduceus. A development process was adopted for
constructing the annotations:

• A proof was attempted with no pre/post conditions.
This helped identify code that Caduceus could not
parse, and highlighted the divide-by-zero issue discussed
below.

• A proof was attempted separately for each precondi-
tion/postcondition pair. This meant that mistakes and
problems were discovered sooner, and were easier to
trace to their sources.

• A combined postcondition was created containing all
of the cases, so that verification could be carried out
in a single step.

2.4 Experience of applying Caduceus
We tackled each of the three functions separately, and in
each case, verification was attempted using the SMT solver
CVC3 [2], generating input for it using the CVC-lite and
SMT-LIB backends of Why, and with the SMT solvers Yices [6]
and Ergo [5]. Example solver output for Trimming are
shown in Table 12.

In some cases, we were able to prove more things using the
more expressive CVC-lite encoding than with the SMT-LIB
encoding, while in other cases the SMT-LIB encoding was
more successful. The main difference that we observed was
in the encoding of division: the SMT-LIB encoding uses
an uninterpreted function to represent division, preventing
the decision procedure from manipulating the arithmetic.
In some cases, where the division itself was not required to
reach the conclusion of the proof, the use of uninterpreted
functions allowed CVC3 to obtain a proof sooner.

Yices was somewhat less successful that CVC3; we speculate
that it rejects problems with certain types of expressions im-
mediately, even though these expressions do not need to be
evaluated to solve the problem. Ergo erroneously reported
“Invalid” for several of the verification conditions.

None of the solvers available to us were able to handle all
of the verification conditions, but, as they did not prove
any conditions to be false, their output still increases the
confidence in the correctness of the result.

The process revealed one interesting issue: the third line
of our constructed specification for Trimming is incorrect,

2These results generated with Why 2.10b, CVC3 1.2.1, Yices
1.0.13, and Ergo 0.7. Timeout was set to 45 seconds on a
2.6GHz Intel Celeron with 1.5Gb of memory.

and so could not be proved (when the configuration would
cause a divide-by-zero error, the value returned by trim-
ming is subject to one-point trimming rather than being
unchanged). This resulted in a proof failure. This had not
been detected during the manual proof as it should have
been.

2.4.1 Divide-by-zero
One significant issue was in handling division. When a divi-
sion x/(p− q) occurs in the code, Why generates a verifica-
tion condition to check that division-by-zero cannot occur.
If p and q are floats, Why generates the verification con-
dition p − q 6= 0.0 (i.e., comparison with the floating-point
zero). In the smart sensor code, such divisions are usually
guarded by a conditional p-q!=0; Caduceus / Why trans-
late this as p− q 6= RealOfInt(0), where RealOfInt is Why’s
uninterpreted casting function. This means that the guard
in the code is different from the verification condition.

Our first attempt at a precondition to choose the non-divide-
by-zero execution path was to write p 6= q. This is a third
way of representing essentially the same condition, but not
all of the decision procedures considered them equivalent.
Specifically, CVC3 in CVC-Lite mode could handle these
issues correctly, while CVC3 in SMT-LIB mode could not.

2.5 Preliminary Results from other code
At the time of writing, we have begun to apply similar tech-
niques to the “frontend” code from the sensor. This code
is older than the core code, and has been inherited from
devices earlier in the manufacturer’s product line. It has a
complex structure: its job is to interface to a wide range of
sensor types, so it includes several 1000-line case statements.

The most interesting parts of this code apply the per-sensor
linarisation tables to the input values. Unlike the linearisa-
tion routines, these are mainly O(1) table lookups with in-
terpolation. The input and output values are floating point,
but the table contains integers (with fixed scaling factors),
and is of course indexed by integers. Our current automatic
proof efforts have stalled as a result of the necessary type
conversions—although the manual proofs presented no par-
ticular problem. None of the decision procedures that we
tried were able to correctly handle conversion between nu-
meric types.

3. CONCLUSIONS

3.1 About the approach
We have found that applying formal proof with the verifica-
tion assisted by Caduceus, Why and CVC3 is very efficient—
it is at least as cost effective as manual proof, and signif-
icantly quicker than analysis based on a theorem prover;
as the cost-per-proof is reduced, the approach scales bet-
ter than manual proof. Successfully applying the technique,
however, still requires some understanding of the proof tech-
niques, so we do not think that automating the proof reduces
the skill-level required. As for all proof techniques, the hard-
est part of applying the approach is creating a suitable for-
mal specification.

An additional advantage of automatic proof was (unexpect-
edly) demonstrated: a mismatch between the code and the
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Table 1: Solver output on “trimming” example

Verification condition Context Ergo CVC3 (SMT) CVC3 (CVC-lite) Yices
pointer dereferencing Valid unsat Valid unsat
postcondition divide-by-zero Invalid (timeout) Valid non linear problem
pointer dereferencing Valid unsat Valid unsat
precondition Tu − Tl 6= 0 Invalid (timeout) Valid unknown
postcondition two-point Invalid unsat Divide by a PLUS expression non linear problem
pointer dereferencing Valid unsat Valid unsat
postcondition single point Valid unsat Valid non linear problem
postcondition trimming off Valid unsat Divide by a PLUS expression non linear problem

specification which was not discovered during manual proof,
but was identified using the new technique.

3.2 About Caduceus
While the Caduceus/Why/CVC3 combination has been very
successful for us, there are a number of shortcomings that
could make the tools more easily applicable.

3.2.1 More flexibility on the input language
We would like to avoid modifying the source code as far as
possible. Techniques from static analysis could be helpful
here: it should be possible to determine automatically that
the standard headers, the version control string, and the
unusued unions had no impact on the function selected for
verification.

It is not clear that our other language issues could be au-
tomatically resolved, though. A mapping a set of direct
memory accesses to a pseudo-array could be provided as an
option, but it would probably be too specific for most users.

3.2.2 More guidance for failed specifications
As described above, we built our specifications in small pieces,
as we found that it was difficult to trace a failure to prove
a proof obligation back to a particular mismatch between
the specification and the code. The visualisation provided in
Why’s graphical interface helps with this to a certain extent,
but a more user-friendly tool could, for example, illustrate
the code path which a given proof obligation is exercising.

3.3 Future work
We plan to extend the work to cover more of the available
smart sensor code, particularly the system frontend. We
also anticipate having access to the source code for a newer
smart sensor from the same manufacturer which has been
subject to a more rigorous development process, and plan
to apply similar techniques to it.

We are also interested in the development of Frama-C [1],
which seems set to replace several other analysis tools in
use at Adelard as well as extending the functionality of Ca-
duceus.

It is unfortunate that, due to the non-disclosure agreements
that make this work possible, we cannot make the code and
the detailed specifications available to the academic commu-
nity. We hope to be able to eventually provide anonymised
and abstracted sources to serve as a benchmark for future
studies.
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ABSTRACT

Modern static software verification systems use automated
or interactive theorem provers to check the consistency of
implicit or explicit specifications against software implemen-
tations. Systems typically allow users to aid the theorem
prover by providing explicit logical statements that are as-
sumed to be true at a given point in the program code.
However, there is no check of these assumptions; if an as-
sumption is invalid, verification systems may fail to report
other specification or implementation errors, giving the user
a false sense of security. This is a known source of unsound-
ness in current verification technology. This paper analyzes
the sources of potentially invalid assumptions and provides
procedures to perform such vacuity checking, using SMT-
produced unsatisfiability checks and unsatisfiable cores.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifica-
tions; D.2.4 [Software Engineering]: Software/Program
Verification; F.3.1 [Logics and Meaning of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms

Software verification, Automated reasoning, vacuity check-
ing, formal verification

Keywords

specification, verification, theorem prover, soundness, vacu-
ity checking, JML, Java Modeling Language, ESC/Java,
ESC/Java2, Yices, Spec#

1. INTRODUCTION
The design of verification systems for practical software

has improved significantly in the past several years, encour-
aged by improvements in efficiency of formulation[10, 15],
competitions on prover performance[4, 20], and increasing
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permission and/or a fee.
AFM 2008 Princeton, New Jersey
Copyright 2008 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

coverage of programming and specification features. How-
ever, in the software development process, most verification
tasks fail and many specifications are initially incorrect. A
good tool set must provide clear and accurate information
both about code that does not conform to its specifications
and about specifications that may be incomplete or in error.

Some errors are particularly insidious - those that mask
other errors by giving the appearance of verification suc-
cess. Since the theorem provers embedded in verification
systems are not all-powerful, specification languages typi-
cally allow the specifier to supply unchecked assumptions.
Both Spec#[3] and JML[13, 14, 18], for example, have an
assume statement that can be placed within a method imple-
mentation. This feature is well-known to introduce a poten-
tial unsoundness1 into the verification system[16, 12]. As-
sumptions are supposed to represent true facts that the ver-
ification system is not able to prove. But we have a problem
if the user states an assumption that is false (or even some-
times false). In propositional and first-order logical systems,
any assertion can be proved from a false premise. Hence typ-
ical provers in exploratory use today may pronounce a piece
of code valid (that is, matching its specifications) if the user
has supplied a false assumption. The false assumption is not
reported and may mask the presence of other errors.

Checking for such assumptions is well-known as vacuity
checking in the model checking literature (e.g. [5, 6]) and is
being introduced into run-time testing techniques [1]. How-
ever, the problem is not generally addressed by automated
tools for formal verification, perhaps because user-written
specifications have not yet become widespread (see [11] for
initial work). Vacuous assumptions are one case of a larger
problem addressed by the question of specification coverage:
do a program’s specifications accurately describe all the be-
haviors needed to ensure a correctly operating system.

We should be clear concerning the degree to which erro-
neous assumptions can be detected. A verification system
can demonstrate the logical consistency or inconsistency of
a program’s implementation and its specifications, but the
system cannot in general state which is correct when they
differ. However, circumstances such as dead code, assump-
tions that are always or too often false, or unimplementable

1Here by unsoundness we mean that there may be errors
in the code (as measured by the specification or implicit
language semantics) that are not reported by the verification
system; a reported warning that does not represent an actual
error is called an incompleteness. The terms unsound and
incomplete have been applied to missing error reports and
erroneous error reports both in the sense defined here and
in the reverse sense.[9]
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specifications may be dubious enough to warrant a warn-
ing to the user. Any automation of these checks will reduce
opportunities for unsoundness in the system. Note that as-
sertions may be vacuous as well – always or too often true;
in this paper, we will discuss only assumptions.

Previous work on identifying problematic assumptions in
static checking is contained in [11] and [7]; there the prag-
matic usefulness of automated tools was established with
experimental data. We contribute in addition an expanded
discussion of the sources of assumptions in static checking,
an analysis of problematic assumptions in the context of the
block equation form of verification conditions [2], a com-
parison of various automated algorithms, and an additional
technique that uses unsatisfiable cores for vacuity (and rel-
evance) testing.

The following section summarizes some preliminaries fa-
miliar to readers having experience with verification sys-
tems. Section 3 explains how verification conditions are
formed from program text in order to illustrate how false as-
sumptions can cause unsoundness. Section 4 describes the
various ways that a user can inadvertently introduce false
assumptions, section 5 describes how verification conditions
can be adjusted in order to automatically detect and report
such assumptions, and section 6 describes how to use min-
imal unsatisfiable cores to detect them. The final section
summarizes our observations.

2. BACKGROUND
A software verification system has the task of analyz-

ing a program to determine whether the implementation of
the program is consistent with the stated specifications. A
program that does so is valid. In this paper we are only
concerned with static verification, in which the program
and specification text are analyzed without being executed.
Specifications may be explicitly stated or may be implicit.
An example of an implicit specification is that a program
will never attempt to access an array element using an out
of bounds index. Note that formal static program validity is
a useful step, but not the only step, in assuring correctness of
a computational system; the specifications themselves may
be incorrect and there are other components of a complete
system which must also be correct.

A verification system typically translates a method’s im-
plementation and specification into a logical statement called
a verification condition (VC). The verification system will
use a theorem prover to determine, if possible, whether the
VC is valid or not. Ideally, the VC is valid if and only if (iff)
the method is valid.

Though the concepts are related and the syntax similar,
the reader should distinguish among (a) a programming lan-
guage’s statements and expressions, (b) the specification lan-
guage used, and (c) the logical theory used by the underlying
theorem prover.

• The example code in this paper is in the Java program-
ming language, though the discussion applies equally
to C# and other languages.

• The specifications are written in the Java Modeling
Language (JML)[13, 14]; translation to Spec#[3] (for
C# programs) is straightforward. In these examples,
the specifications of a method consist of the method’s
preconditions (requires clauses in JML), frame condi-
tions (modifies clauses), and postconditions (ensures

clauses). Preconditions state the logical conditions
that must hold in the program state when the method
is invoked; they generally include any object invari-
ants (denoted by invariant clauses) that are true of
all objects of a given class. Frame conditions tell which
program variables are allowed to be modified by the
method and, by omission, which are guaranteed to be
unchanged after the method call. Postconditions state
the logical conditions that must hold in the new pro-
gram state that exists after a method call; the post-
conditions also usually include any object invariants.

• Logical statements are expressed using conventional
first order logic combined with the theory of arith-
metic using conventional notation. Note that in pro-
gramming and specification language examples the =
operator is assignment, while in logical statements =
denotes equality. The logic includes variables that cor-
respond in name to programming language variables in
method implementations, but typically more than one
logical variable is associated with a given programming
language variable.

The theorem provers used by most static checkers of the
type discussed here are SMT (Satisfiability Modulo Theo-
ries) solvers (see [20, 21] for links to a number of tools).
These solvers combine decision procedures for propositional
logic with others appropriate for reasoning about program-
ming languages: uninterpreted functions, linear arithmetic,
arrays, and quantification. These tools have improved signif-
icantly in recent years. Their main drawback is that quan-
tified formulae are handled heuristically.

3. THE STRUCTURE OF VERIFICATION

CONDITIONS
In this section we are concerned to understand the struc-

ture of the verification condition. For this purpose we begin
with the translation of a method into a logical statement as
described in [2], where the details of the following descrip-
tion can be found.

3.1 Basic blocks and passive programs
Following the derivation in [2], a program is decomposed

into an equivalent set of basic blocks, each block correspond-
ing to a non-branching section of code. One distinguished
block is the start block, corresponding to the beginning of the
method (including any preconditions). Logical assumptions
are added to indicate the conditions under which a partic-
ular basic block may be executed. For example, a simple
if-then-else statement will result in two basic blocks, corre-
sponding to the then and else branches of the if-then-else
statement. The then block has an initial assumption that
the branch condition is true; the else block has an initial
assumption that the branch condition is false. Each basic
block also has a list of blocks which may follow it.

Loops are also converted into basic blocks by the introduc-
tion of assumptions and assertions corresponding to loop in-
variants (see section 4.5). The result is a set of basic blocks
that form a directed acyclic graph, with the edges corre-
sponding to the follows relationship.

Finally, the set of blocks is made into a passive program
by transforming each block into dynamic single assignment2

2Dynamic single assignment (e.g. [2] and references therein)
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(DSA) form and then converting all assignments into as-
sumptions. Each block then consists of a sequence of as-

sume and assert statements. The assume statements ex-
press logical conditions that are presumed true: they corre-
spond to preconditions, assignments, branch tests, as well as
user specified assumptions and axioms. The assert state-
ments express logical conditions that must be true, given
previous assumptions, if the program is valid; they are gen-
erated from explicit assertions and implicit requirements: no
dereferencing of nulls, out of bounds indices, calling methods
whose preconditions are not satisfied, modifying variables
that are stated to be unchanged, etc. A verification system
is designed to test and report assertion violations. Current
systems do not check for problematic assumptions.

3.2 The block equations
The decomposition of the previous subsection results in a

set of basic blocks. Each (basic) block b has the following:

• a sequence Sb of assume and assert statements;
• a set Fb of blocks that follow block b;
• an auxiliary propositional variable Ab;
• a block equation Qb, where Qb is the formula Ab =

wp(Sb,
∧

j∈Fb
Aj) (with wp defined below).

There is a distinguished block, b0, that corresponds to the
beginning of the program. The follows relationship b ≻
b′ ≡ b′ ∈ Fb is a partial order over the blocks and b0 is a
maximal element of that partial order (it does not follow
any other block). For simplicity, we restrict ourselves to
methods that have a single entry point, in which case b0 is
the maximal element. The expressions in the assume and
assert statements and the block equations contain logical
variables that are associated with the programming language
variables in the method’s source code. The DSA procedure
converts a given programming language variable into one
or more logical variables. This set of logical variables is
augmented by the auxiliary variables Ab. The verification
condition is this (as proved in [2]), implicitly universally
quantified over all the logical and auxiliary variables:

(
∧

b

Qb) ⇒ Ab0 . (1)

The interpretation of this verification condition is that the
method under scrutiny is valid iff its corresponding VC is
true for every assignment of values to the set of logical and
auxiliary variables.

Because the blocks can be ordered by the ≻ partial order,
we can eliminate in turn each auxiliary variable (assuming
all the block equations hold) and can solve for Ab0 . In order
to visualize the structure of that solution, we need to look
at the details of the block equation and the definition of the
weakest-precondition predicate. The wp predicate operates
on its arguments as follows (P , Q, and R are expressions in
the underlying logic):

• wp(S, P ) = wp(S ′, wp(T, P )) if S is the sequence of
statements consisting of the statement sequence S ′ fol-
lowed by the statement T ;

• wp(S, P ∧ Q) = wp(S, P ) ∧ wp(S, Q) for a statement
sequence S ;

• wp(S, Q) = (P ⇒ Q) if S is the statement assume P ;

is similar to the better known static single assignment, but
that distinction is not used in the discussion in this paper.

• wp(S, Q) = (P ∧ Q) if S is the statement assert P .

Using propositional tautologies, we can then express Ab0 (or
any block variable) in the form

Ab0 =
∧

m

((
∧

k

Rmk) ⇒ Tm), (2)

in which the Rmk are assumption predicates and the Tm

are assertion predicates. Call each conjunct (
∧

k
Rmk) ⇒

Tm a trace. Eq. (2) expresses the VC as a conjunction
of traces, with each trace expressing the truth of a given
assertion, under a set of assumptions; each trace corresponds
to a control path through the program ending at a particular
assertion.

Using the transformations given above we can prove (with
suitable definitions of each Rmk and Tm) that

(
∧

b

Qb) ≡ (Ab0 =
∧

m

((
∧

k

Rmk) ⇒ Tm)), (3)

Thus, an equivalent form of the verification condition is

(Ab0 =
∧

m

((
∧

k

Rmk) ⇒ Tm)) ⇒ Ab0 . (4)

or, equivalently,
∧

m

((
∧

k

Rmk) ⇒ Tm), (5)

which we abbreviate as AV C .
The method under scrutiny is valid precisely when its AV C

is true. AV C is true precisely when all of its traces are jointly
true for any given assignment. A trace can be false for a
given assignment only when its assertion is false and all of its
assumptions are true; if any assumption evaluates to false,
the trace will be true. As is explained shortly, an assumption
can be false for very legitimate reasons. The crux of the
problem addressed by this paper is found in assumptions
that are unexpectedly false but are not distinguished from
assumptions that are legitimately false.

The expanded form of the VC in Eq. (5) is unsuitable for
input to a theorem prover. For any program with branches
and loops, this VC will be larger than it would be by sup-
plying the theorem prover with the basic block equations
(Eq. (1)) directly. Distributing ⇒ over ∧ introduces copies
of common subexpressions that will cause a theorem prover
to do unnecessary work. The form of Eq. (5) however is
conceptually simple and allows easier reasoning about the
properties of the VC.

3.3 Assumptions produced by passifying as-
signments

An important step in producing a verification condition
from a program is renaming variables into DSA form and
then passifying assignments by expressing them as assump-
tions. For example, the program text

x = 1;

x = x + 1;

assert x == 2;

becomes the passified program

assume x$1 = 1;

assume x$2 = x$1 + 1;

assert x$2 = 2;
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which becomes the VC fragment

((x$1 = 1) ∧ (x$2 = (x$1 + 1))) => (x$2 = 2).

In considering satisfying assignments, x$1 and x$2 are as-
signed (numeric) values independently. There are many
variable assignments in which x$1 is different than 1 and
many variable assignments in which x$2 is different than
x$1 + 1. All of these “incorrect” variable assignments result
in false assumptions and a true VC. In this case, only one
variable assignment satisfies the two assumptions (x$1 = 1
and x$2 = 2) and with that assignment the final assertion
is true.

Thus assumptions that are false under some assignments
are an integral and expected part of the design of a VC. The
problem is that false assumptions can also be introduced
inadvertently, as described in section 4.

3.4 Feasible assumptions and traces
It is helpful to define the concepts of (in)feasible assump-

tions and traces, in analogy to feasible paths through se-
quences of programming language statements.

• An assumption Rmk is immaterial within a trace
(
∧

k
Rmk) ⇒ Tm iff (

∧
j<k

Rmj) is false for all variable
assignments.

• An assumption Rmk is infeasible within a trace
(
∧

k
Rmk) ⇒ Tm iff for all variable assignments for

which (
∧

j<k
Rmj) is true, Rmk is false.

• An assumption is strictly infeasible if it is infeasible
but not immaterial.

• An assumption Rmk is feasible within a trace iff it is
not infeasible within that trace, that is, an assumption
is feasible iff there is at least one variable assignment
for which (

∧
j<k

Rmj) and Rmk are true.
• A trace is infeasible iff it contains at least one infeasible

assumption.
• A trace is feasible iff it is not infeasible, that is, none

of its assumptions are infeasible.

The following observations follow easily from these defini-
tions.

• An immaterial assumption is infeasible, but not strictly
infeasible.

• If an assumption Rmk is immaterial, then some Rmj

for j < k is infeasible.
• An assumption is (exclusively) either strictly infeasi-

ble, immaterial, or feasible.
• An infeasible trace is always true (even if the conclud-

ing assertion is always false).
• If a program contains a feasible trace whose final as-

sertion is false, then there is a variable assignment for
which the trace is false and the program is therefore
not valid.

• An infeasible assumption is not necessarily false for all
variable assignments, but it is always false when its
preceding assumptions are true, that is, it is always
false when it is “relevant”.

4. SOURCES OF FALSE ASSUMPTIONS

IN USER SPECIFICATIONS
Assumptions in passive programs are produced by the fol-

lowing programming language and specification constructs:

• assignment statements
• branch conditions (e.g. if-then-else and switch state-

ments and loop tests)
• loop invariants
• method preconditions
• specifications of called methods
• user-specified assume statements (including JML’s ax-

iom clause)

The assumptions from assignment statements were discussed
in subsection 3.3. From that discussion and the definitions
in subsection 3.4, assumptions from assignments are never
strictly infeasible. Branch and loop conditions are expected
to be feasible (if not immaterial), but can be associated with
dead code (subsection 4.6) and infinite or unexecuted loops.
Loop invariants are discussed in subsection 4.5.

The last three of the sources listed above are user-written
specifications that can introduce unintentionally false as-
sumptions. Each of these false assumptions stems from a
user error; that is, the user has written an incorrect spec-
ification, and the theorem prover is giving logically correct
conclusions from the faulty premise.

4.1 Faulty assume statement
The most obvious and significant source of a faulty as-

sumption is a user-supplied assume statement. The condi-
tion contained in the assume statement may be tautologi-
cally false - a misstated mathematical axiom, for example.
Less obvious is an assumption that is always false on some
branch of the program’s control flow, but not necessarily
false for all assignments of program variables.

Consider the example3 code in Fig. 1. The passified pro-
gram has these statements:

assume i$0 > 0; // precondition

assume j$1 = 0; // assignment

assume i$0 = 0; // assumption

assert j$1 > 0; // assertion

The VC is

((i$0 > 0) ∧ (j$1 = 0) ∧ (i$0 = 0)) ⇒ (j$1 > 0).

The third assumption contradicts the first and is infeasible,
so this VC is always true. As a result, the erroneous asser-
tion is not reported.

4.2 Faulty preconditions
The preconditions of a method are encoded in the verifi-

cation condition as assumptions that begin the verification
condition or the starting block equation. If any combination
of the preconditions is always false, the VC will be trivially
true because of an infeasible assumption. Note that the
preconditions include both the explicit preconditions of the
method being verified as well as class invariants, which are
typically separated textually from the method specifications.

Consider the code in Fig. 2. A method fix is supposed
to change a static variable from negative to positive, so that
the class invariant is satisfied, but has a typo. The passified
basic block for this method has the following statements:

3The examples in this paper are intentionally obvious and
simple, to save space and to make the illustrations clear.
Specification errors can be obvious in small programs, but
still be hard to spot in large real systems. Practicing writers
of software and specifications will be able to remember their
own more complex examples.
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class E {

//@ requires i > 0;

static void problem(int i) {

int j;

j = 0;

assume i == 0; // should be j == 0

assert j > 0; // should be i>0

}

}

Figure 1: Example code with an erroneous assump-

tion that hides an invalid assertion

class E {

static int i;

//@ static invariant i > 0;

//@ requires i < 0;

//@ modifies i;

//@ ensures i > 0;

static void fix() {

i = -1; // should be i = -i

}

}

Figure 2: Example code with an infeasible precon-

dition

assume i$0 > 0; // invariant

assume i$0 < 0; // precondition

assume i$1 = -1; // assignment

assert i$1 > 0; // postcondition

The VC for this method is then

((i$0 > 0) ∧ (i$0 < 0) ∧ (i$1 = −1)) ⇒ (i$1 > 0).

This VC is always satisfied because the first two assumptions
are contradictory; consequently no warnings are given, even
though the postcondition assertion should not hold. The
specifier apparently forgot that the class invariant is part of
the precondition as well. If the invariant is removed, then
the failure to satisfy the postcondition is noted.

4.3 Faulty postconditions of called methods
If the body of a method M calls a method M ′, then the

specifications of method M ′ must be considered in the veri-
fication of method M . The specification contract of method
M ′ states that if M ′ is called in a state in which its precon-
ditions hold, then upon completion its postconditions will
hold. A called method is encoded by (1) assigning values
to the formal parameters, (2) introducing assertions for its
precondition, (3) defining new variable names for modified
program variables, and (4) adding assumptions expressing
its postconditions. Whether or not the postconditions of
M ′ are actually established by its implementation, given its
preconditions, is determined when M ′ is verified; during the
verification of M that relationship is assumed. However,
M ′ may be undergoing debugging itself and its specifica-
tions are still in error, or it may be part of a library for
which verification has not (yet, we’ll say) been performed.
Although we cannot guard against all specification errors,
we can check for infeasible postconditions, that is, for post-

class E {

static int i,j;

static public void caller() {

j = 0;

i = sign(j);

//@ assert i == 1000; // Should fail

}

//@ ensures (k >= 0) ==> \result == 1;

//@ ensures (k <= 0) ==> \result == -1;

static public int sign(int k);

}

Figure 3: Example code with an infeasible postcon-

dition

conditions that are contradictory (unimplementable).
Consider the example code in Fig. 3. The statements

of the basic block corresponding to the method caller are
these:

assume j$1 = 0; // the assignment

assume k$1 = j$1; // the formal parameter

assume (k$1 >= 0) ==> ($result$1 = 1);

assume (k$1 <= 0) ==> ($result$1 = -1);

assume (i$1 = $result$1); // assignment

assert (i$1 = 1000); // the assertion

This becomes the verification condition fragment

((j$1 = 0) ∧ (k$1 = j$1)

∧ ((k$1 ≥ 0) ⇒ ($result$1 = 1))

∧ ((k$1 ≤ 0) ⇒ ($result$1 = −1))

∧ (i$1 = $result$1))

⇒ (i$1 = 1000).

Any variable assignment that makes the first three assump-
tions true must have j$1 and k$1 be 0 and $result$1 be
1. With any such assignment, the fourth assumption will al-
ways be false. Hence the fourth assumption is infeasible, the
trace is true, and the false assertion generates no warning.

Note first that the specification of sign(int i) is incor-
rect; that error would be found when trying to verify the
sign method. However, it would be helpful to the program-
mer trying to specify caller to provide as much relevant
information as possible.

Also, note that this detection of infeasible postconditions
in context is weaker than verifying the called method di-
rectly. If, in caller, the first assignment were j = 1;, then
no infeasible assumptions would be found, even though the
postconditions are not entirely correct; they do work fine if
the argument to the method is not 0.

4.4 Missing frame conditions
In the previous section, we talked only about the pre-

and postconditions of a called method. There can also be
errors in its frame conditions that lead to infeasible assump-
tions. Consider the example in Fig. 4. The specifications of
method badinc have an incorrect frame condition (modifies
clause): it is missing the fact that variable i is changed in
the method. The DSA method of creating a verification
condition uses a new variable name in the VC to represent
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class E {

static int i,j;

//@ modifies i;

//@ ensures i = j + 1;

static public void inc() {

i = j+1;

}

//@ modifies \nothing; // Incorrect

//@ ensures i == j + 1;

static public void badinc() {

i = j+1;

}

static public void caller() {

...

i = 0; // Line A

//@ assume j == 0; // Line B

inc(); // Line C

//@ assert i == 1; // Line D

j = i; // Line E

badinc(); // Line F

//@ assert i == 2; // Line G

...

}

}

Figure 4: Example code with an incorrect frame con-

dition

a program variable each time that program variable might
be modified; program variables can be changed by direct as-
signment or indirectly in method calls. The call to inc()

results in the following statements:

assume i$1 = 0; // Line A

assume j$1 = 0; // Line B

assume i$2 = j$1 + 1; // Line C

assert i$2 = 1; // Line D

Note that on Line C, after the call of inc(), a new variable,
i$2, is used to represent the program variable i. This vari-
able is introduced because the specification of inc indicates
that i may be modified. The assertion for Line D is consis-
tent with the assumptions on Lines A–C. On the other hand,
the call of badinc() will result in the following statements:

assert i$2 == 1; // Line D

assume j$2 == i$2; // Line E

assume i$2 == j$2 + 1; // Line F

assert i$2 == 1000; // Line G - should fail

Here, the method badinc specifies that i is not modified in
the method call; therefore, the same variable name is used
for the program variable i before and after the method call.
Because i does not get a new variable name in Line F, the
assumption on Line F contradicts the assumption on Line E
and consequently is infeasible. No warning is given for the
false assertion on Line G.

4.5 Faulty loop invariants
Loop invariants also introduce assumptions. However,

faulty loop invariants generally result in unprovable asser-
tions rather than silent infeasible assumptions. As explained

in [2], loops are decomposed into an acyclic graph of basic
blocks by introducing appropriate assumptions and asser-
tions. A loop invariant is expected to be true prior to each
iteration of a loop. A loop of the following form

...

//@ loop_invariant I;

while (B) {

...

}

...

results in basic blocks like these:

Before:

...

assert I ; // asserts the loop invariant

goto Loop

Loop:

assume I’; // loop invariant with renaming

goto Body, After

Body:

assume B ; // loop condition is true

...

assert I’’;// loop invariant with renaming

goto // goes nowhere

After:

assume !B ;// loop condition is false

...

If I is tautologically false, the assumption in the Loop block
will always be infeasible. However, the assertion in the Be-
fore block will also fail, producing a warning to the program-
mer. In the case where the loop invariant is not tautologi-
cally false but is faulty because it contradicts assumptions
earlier in the program, the assertion will still fail. The situ-
ations in which I combined with B or !B results in dead code
correspond to situations in which the loop never terminates
or is never executed; these can be detected as described in
the following subsection. So no special checks are needed for
loop invariants.

4.6 Dead code
Consider the code of Fig. 5. The then part of the if state-

ment is never executed, presuming any caller does indeed
satisfy the method’s preconditions. The basic blocks for
this snippet of code contain the following:

Start: assume o != null; // A

goto Then, Else

Then: assume o == null; // X

...

Else: assume o != null;

...

The assumption marked X is infeasible because it is al-
ways preceded by the assumption marked A. Infeasible as-
sumptions resulting from never-taken conditional branches
do not cause the verification system to give misleading re-
sults. However, they do indicate dead code of which the
programmer may be unaware. The same mechanism that
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class E {

static int i;

//@ requires o != null;

static public void example(String o) {

if (o == null) {

i = -1;

} else {

i = o.length();

}

}

}

Figure 5: Example dead code

discovers other kinds of infeasible assumptions can find dead
code as well and can provide at least the option of warning
the programmer.

If there are multiple branches within a program, it is com-
mon that, even if no branch is dead, various combinations
of branches cannot be executed together. For example, if
a program has many if statements with the same branch
condition (e.g. if (DEBUG) ...), then all of those branches
will be executed or none of them will. Thus there may be
many combinations of branches (i.e. many traces) that are
correctly infeasible. They will be apparent because they will
have contradictory assumptions arising from branch condi-
tions (e.g. both assume DEBUG and assume ¬DEBUG). Any
method to warn the programmer of infeasible assumptions
will need to avoid issuing false warnings in such cases.

5. DETECTING FAULTY ASSUMPTIONS

5.1 Testing the expanded VC
So far we have observed that VCs contain a mixture of as-

sumptions, some of which are legitimately false for a given
variable assignment, others are appropriately infeasible in
a given trace, and others may be infeasible because of user
errors. In this section we describe methods to detect infeasi-
ble assumptions using satisfiability checking of SMT provers.
We will check for the following potentially faulty specifica-
tions by testing whether the corresponding assumptions in-
troduced into the VC are infeasible:

• faulty explicit user assumptions;
• faulty preconditions;
• faulty frame and postconditions of called methods
• code blocks that are never executed (dead), by testing

for infeasible branch and loop conditions

In the process we must avoid warning about

• assumptions generated by assignment statements
• infeasible assumptions (stemming from branch condi-

tions) on legitimately infeasible traces, so long as the
basic block controlled by the branch condition is part
of some feasible trace

As noted above, if a particular trace of a VC contains an
infeasible assumption, that trace will always be true, even
if the assertion statement is explicitly false. This fact corre-
sponds to an idiom employed by ESC/Java2[8] users: if the
user suspects that ESC/Java2 reports no errors for a par-
ticular method because of an infeasible assumption, then an

assert false statement is added at an appropriate place in
the method’s code; if ESC/Java2 now reports an assertion
violation, then the assumptions (at least up to the location
of the inserted assertion) were feasible; however, if no asser-
tion violation is reported, then there is something infeasible
preceding that assertion.

Note that there is no point in checking for infeasible as-
sumptions while the VC has assertion violations. In fact, if
an assertion is identified as false in a particular trace, then
that trace must be feasible. It is only when no assertion
violations are reported that we want to check that all as-
sumptions are feasible, in order to know whether to trust
the no-assertion-violation report. All that is needed to en-
sure that an assumption is feasible in a trace is to test that
the appropriate ∧j≤kRmj is satisfiable.

Thus we can do the following:
Algorithm A:

For each assumption Rmk to be tested in each trace
(
∧

k
Rmk) ⇒ Tm of the VC, do the following: Con-

struct the conjunct ∧j≤kRmj . The conjunct is satisfi-
able iff Rmk is feasible.

Algorithm A tests each copy of each assumption in each
trace individually; each test is precise, but many tests are
required. There is a trace for each path through the code,
and the number of traces is exponential in the number of
branch statements (e.g. if-then-else or switch statements).
We can reduce the number of tests by checking each trace
once, as follows:
Algorithm B:

For each trace (
∧

k
Rmk) ⇒ Tm of the VC, do the

following: Construct the conjunct (
∧

k
Rmk); the trace

is feasible iff this conjunct is satisfiable.

Algorithm B allows testing all assumptions in a given trace
at once. If the test fails, one must still narrow the search to
a particular faulty assumption. However, for the common
case of checking that a mostly correct program has not ac-
quired faulty assumptions, this approach reduces the work
required. Unfortunately, there still may be too many traces
to test. And if many traces are unfeasible because of con-
flicting branch conditions, a lot of unnecessary work may
result.

One cannot, however, combine multiple traces into one
test. Suppose we modify Algorithm B to test two traces
at once by conjoining two created traces. If the resulting
expression is valid, then both traces contain an infeasible
assumption. If the conjunct is invalid, then one or the other
trace is feasible; that is, if the conjunct is invalid, there may
be no infeasible assumptions or there may be one. This
combined test is not particularly helpful in assuring that
there are no infeasible assumptions in the program.

5.2 Testing the basic block VC
There are two problems with the algorithms of the previ-

ous subsection: there may be too many traces to check, and
we would prefer to perform our validity testing using the
much more efficient block equation form (Eq. (1)) of the
VC. Observe that when the block equations are expanded
into Eq. (5), the predicate of a given assumption may be
replicated across multiple traces, corresponding to the var-
ious control paths by which it can be reached within the
program.
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Suppose we execute the following procedure:
Algorithm C: For each assume statement that is to be
tested in the set of basic blocks, do the following:

• place a assert false; statement immediately after
that assumption

• regenerate the block equations and the modified VC
• if the modified VC is still valid, the assumption is infea-

sible in all the traces in which it is present; if the mod-
ified VC is invalid, the assumption is feasible in some
but not necessarily all traces in which it is present.

Alternatively (Algorithm C’), we can combine checks for
all assumptions in a basic block by adding the assertion at
the location after all the assumptions in the basic block.

5.2.1 Dead code

This test is precisely what is needed for dead code detec-
tion. Assumptions from branch conditions may be feasible
or infeasible depending on the control path taken to reach
the basic block corresponding to the branch. We do not wish
to report branches that are infeasible in some traces, only
those which are infeasible in all traces in which they occur.
Algorithm C or C’ does precisely that.

5.2.2 Preconditions

This test is also trivially appropriate for testing precon-
ditions. A method’s preconditions occur as assumptions at
the beginning of the start block. Those assumptions form
the first portion of every trace. Hence they will be infeasi-
ble in all traces or in no traces. Algorithm C will correctly
indicate whether the precondition assumptions are infeasi-
ble (contradictory). One can also, equivalently, and perhaps
more easily, test that the conjunction of the precondition as-
sumptions is satisfiable, indicating they are jointly feasible.

5.2.3 User assumptions

When Algorithm C is applied to explicit user assumptions,
it tests whether the assumption is infeasible in all traces (on
all control paths). This is a good first test to apply and
checks, for example, that the assumption is not always false.
But it is also useful to be able to test that the assumption
is not strictly infeasible on individual traces.

We can test the feasibility of a block B (or an assumption
in that block) in a particular trace T in the style of Algo-
rithm C as follows. Determine the set of blocks BB that
precede B in T . Let Pb be the branch condition (if any) cor-
responding to a block b in BB . The conjunction (∧b∈BB

Pb)
is true in block B precisely for the specific trace of interest.
Thus we have this algorithm:
Algorithm D: For each assume statement that is to be
tested in a block B (or for the entire block), do the following:

• form the negated conjunction ¬((∧b∈BB
Pb))

• place a assert ¬((∧b∈BB
Pb)); statement immediately

after that assumption or at the end of the block
• regenerate the block equations and the modified VC
• the assumption or block is infeasible in all the traces

for which the assertion is false iff the modified VC is
still valid.

The advantage of this algorithm is that the predicate in the
assertion can be chosen to designate any specific trace or
group of traces; the entire VC does not have to be rewritten
– only the one subformula.

5.2.4 Specifications of called methods

We can treat called methods in precisely the same way as
user-specified assumptions.

5.3 Observations
The sections above described two basic procedures for de-

tecting infeasible assumptions using satisfiability checking:

• Algorithms A,B,D: Check that each trace is feasible.
If not, verify that the trace is infeasible because of a
user assumption, rather than a combination of branch
conditions.

• Algorithm C,C’: Check that each assumption or block
in the block equations is feasible (for at least one trace).

The choices among these depend on the performance char-
acteristics and features of the prover being used. When in-
vocations of the prover are expensive we would start with
Algorithm C’, and then use Algorithm D when more pre-
cision about assumptions being feasible in each potential
trace are needed. If the prover’s performance scales badly
with the size of the logical statement under scrutiny, then
Algorithm B (or A) has an advantage, even though it may
need repeating for many traces.

If the prover being used provides incremental satisfiability
results efficiently, that feature can be used to advantage. For
example, Algorithm D can be modified as follows. Rather
than inserting the statement, assert ¬((∧b∈BB

Pb));, insert
instead the statement assert X;, where X is a previously un-
used variable. In addition add the additional equation (like
a block equation) X = ¬((∧b∈BB

Pb)). In an incremental
SMT prover, that latter equation can be retracted and an
alternate equation (for a different trace) asserted, and satis-
fiability rechecked. Depending on the prover, this may be a
more efficient procedure than repeated satisfiability checks
from scratch.

It is also useful to factor a VC using definitions. If there is
a common subformula or subterm T , replace it everywhere
by an otherwise unused variable Z and conjoin the equation
Z = T to the VC. This can shorten the VC, simplify the
prover’s task, and assist in interpreting any counterexam-
ple (particularly if Z is appropriately named). It can also
simplify the task of formulating various additional logical
statements to be checked.

There is a final observation to make. With user-specified
assumptions, we are concerned to know that the assumption
is feasible in any trace containing that assumption. This
can add significantly to the testing time. However, if the as-
sumption is independent of the control path used to reach it,
only one test need be performed. This will be the case if the
assumption is written as a fully-quantified tautology with no
free variables, presumably one that the prover cannot prove
itself; the tautology would equate logical assertions known
to the prover prior to the assumption to those needed to
check the remainder of the program.

6. USING UNSATISFIABLE CORES
The previous section outlined automated methods to find

infeasible assumptions using a prover’s unsatisfiability check.
Some SMT provers provide additional information when a
set of formulae are unsatisfiable: a subset of the formulae,
called an unsatisfiable core, which is itself unsatisfiable. This
information can be used to identify vacuous or irrelevant
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information, though, as we shall see, some improvements
in the state of the art of SMT solvers are needed to make
this a robust technique. It also requires formulating the
VC differently than above. Checking of unsatisfiable cores
is being used in model checking tools but has not yet been
applied to static checkers using SMT provers.

Consider this simple basic program: assume X; assume

Y; assert X;. To verify this, one establishes the unsatisfi-
ability of the set {¬A, A = (X =⇒ Y =⇒ X)}. Both
formulae are needed to show unsatisfiability. This is still
true if Y is replaced by ¬X. However, let us factor out the
assertion. The set {¬A, A = (X =⇒ ¬X =⇒ T ), T = X}
is unsatisfiable, but the first two formulae constitute an un-
satisfiable core; the third formula is not needed.

We can apply this approach in general as follows. In check-
ing a VC for satisfiability, we rewrite the negation of the VC
in conjunctive normal form as ¬Ab0∧(∧bQb); then each con-
junct becomes a formula that may or may not be present
in the unsatisfiable core. The VCs produced from block
equations are especially amenable to this transformation, as
opposed, for example, to those produced by the current ver-
sion of ESC/Java. We modify the original block program by
inserting an assert Z; statement (where Z is a previously
unused variable name) immediately after an assumption S

or at the end of a block that we wish to check, and from
that we generate a new verification condition, VC’. Then we
can note these two facts:

• ¬V C is unsatisfiable iff ((¬V C′) ∧ Z) is unsatisfiable;
• (¬V C′) is unsatisfiable iff ((¬V C′)∧Z) is unsatisfiable

and the assumption S is infeasible (on all paths to S).

Therefore, if ¬V C is unsatisfiable and Z is not a member of
the minimal unsatisfiable core, then S is infeasible.

Intuitively, if we place a assert Z in a program, then (a)
if Z is true, the program is unchanged, but (b) if the value of
Z does not matter, then execution never reaches that point
in the program.

We can also extend this technique analogously to Algo-
rithm D by introducing a guard that constrains the check to
a particular trace (or group of traces). Instead of the simple
assertion Z, we place the assertion ¬G ∨ Z in the location
to be tested, where G is a formula that is true only for the
traces to be tested. Then the assertion is true for all other
traces, and if the trace is feasible up to the assertion, then Z

will be needed in the minimal core; if the trace is infeasible,
Z will not be in the minimal core.

Though this technique works in principle (and partially in
practice), there are a few issues. First, a minimal unsatis-
fiable core is needed and producing a minimal unsatisfiable
core is difficult. For example, Yices[17, 22] produces un-
satisfiable cores, but does not guarantee that they are even
locally minimal. Without a guaranteee of minimality, the
procedure above is not robust by itself; one needs in addi-
tion to check and correct the reported core for minimality.

Second, the core produced can be sensitive to the way in
which the set of formulae is presented to the prover. For
example, if a common subformula is factored out and de-
fined in a separate equation, then an additional formula is
needed as part of the minimal core, changing perhaps what
is minimal. It could be useful to measure minimality not
simply by a count of formulae, but by some weight attached
to each formula.

Finally, the overall performance cost of determining un-

satisfiable cores on real programs has not been measured.
For this algorithm to be useful it must be possible to use
cores and incremental satisfiability checks in a way that im-
proves upon the procedures in section 5. A related ques-
tion is whether incremental checks using a SMT prover’s
ability to save, restore or incrementally change its logical
context improves the performance of doing multiple satisfi-
ability checks over that of restarting the prover (as is done,
for example, in [11]).

7. IMPLEMENTATION
A prototype implementation sufficient for experimenta-

tion has been created using the OpenJDK[19] implementa-
tion of a Java compiler (for Java 7). This compiler was
extended to parse all of JML into an internal abstract syn-
tax tree and to perform syntax and typechecking on most
of JML’s features. The Java/JML AST for a given method
is translated into verification conditions appropriate for in-
put to the Yices[17, 22] SMT solver using a partial, proof of
concept implementation. Techniques of both sections 5 and
6 were implemented.

The ability of Yices to accept and retract assertions incre-
mentally is helpful here. Once a method’s VC is found valid
(no assertion violations), the verification system can then
assert and retract the additional logical statements that rep-
resent the checks for various infeasible assumptions. This in-
cremental approach avoids having to restart the prover and
reassert the entire background predicate and block equa-
tions for the method under test. Similarly, the unsatisfiable
cores produced by Yices are sufficient to experiment with
the procedure of section 6.

The implementation to date has allowed experimentation
with the concepts and procedures described in this paper.
Assessment of their performance on significant code bases,
the evaluation of various heuristics in formulating the VCs,
and comparison of performance across various SMT solvers
is in progress.

8. RELEVANCE
We note as future work that the techniques of section 6

can be used to measure relevance and coverage as well as to
check vacuity. Suppose we replace some subterm T in the
block equations with a new variable Z, and add to the set
of block equations the definition Z = T . The satisfiability
of the resulting VC is unchanged. However, if the VC is
unsatisfiable and the formula Z = T is not part of the un-
satisfiable core, then the value of T is irrelevant to the proof
of validity supplied by the unsatisfiability check. That is,
that portion of the program is not relevant to the specifi-
cation being checked. Note that T may represent a group
of statements in a program, or it may be a small subterm
within an expression. Such irrelevance can indicate a fault
on either side.

• On the one hand, that portion of the program may
actually not be needed. It may be never executed code,
but it may also be something executed but not used,
such as an unused variable assignment.

• On the other hand, it may be that the specification
is not detailed enough, that is, the coverage of the
specification is inadequate (just as a runtime test set
might have inadequate coverage). In some cases, of
course, the user may not want or need a completely
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detailed specification, but in others this condition may
point to inappropriate underspecification.

We can similarly use this technique to perform the com-
plementary check that a subterm of the specification is rel-
evant. If it is not relevant, it is likely that some portion of
the specification is vacuous.

9. CONCLUSIONS
We have observed in this paper that some kinds of erro-

neous, user-supplied specifications can be detected automat-
ically by an enhanced software verification system and have
proposed procedures for doing so. This reduces (but does
not eliminate) the risk of misunderstood results from SMT-
style provers caused by faulty assumptions. The enhanced
verification system can use the components (e.g. parsers, VC
generators, provers) that are in common use today for such
systems; it only need check some additional logical asser-
tions that are related to the primary VC for a method. The
incremental checking capabilities of some SMT solvers are
useful in this process. In addition, if the underlying prover is
able to report unsatisfiable core sets of assertions, then some
information about infeasible (vacuous) assumptions can be
obtained without repeatedly invoking the prover.
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ABSTRACT
Bounded Model Checking (BMC) is often able to handle
thousands of system variables by encoding the system and
its properties via symbolic formulas and using satisfiability
(SAT) solvers for verification. To further ease the verifica-
tion of state invariants, BMC is augmented with a general
induction rule called k -induction; however, this sacrifices
completeness. Invariant strengthening, a method proposed
to overcome this problem, often requires user intervention
which limits its general applicability.

This paper presents a systematic method which is able to
prove every property that is provable with standard k-induc-
tion and, in addition, further properties that the standard
technique is unable to prove might be provable as well. Our
case studies demonstrate the benefit of our approach with re-
spect to plain k-induction. The main idea is to constrain the
state transition relation in a way that the space of reachable
states remains unchanged and k -induction is more likely to
succeed. We show an implementation of our technique where
the user needs only to extend the guard conditions with in-
variants obtained from the system’s specification. This is
always possible if the schedule of the executed transitions is
(partially) known a-priori.

1. INTRODUCTION
Model checking [6] has proven to be one of the most ef-
fective verification techniques. Over the last two decades,

∗Research supported in part by DFG GRK 1362 (TUD GK
MM), EC Genesys and ReSIST.
†Péter Bokor is also with Technische Universität Darmstadt.

model checking has been applied to various fields including
hardware, software and protocol verification. The growing
demand for verifying large systems has made model check-
ing of explicit state models infeasible, therefore, the system
and its properties were proposed to be represented by sym-
bolic formulas. In fact, Binary Decision Diagrams made it
possible to verify systems with hundreds of variables [10],
SAT-based methods have gone even beyond that [2]. The
latter approach is called Bounded Model Checking because
only execution paths of limited length are translated into in-
put formulas of the SAT engine. The technique guarantees
that, given a bound k, the SAT instance is satisfiable if and
only if there exists a counterexample (i.e., a violating exe-
cution) whose maximum depth is k. The limitation of the
BMC approach is that general completeness, i.e., the guar-
antee that correct properties can always be proven, comes
at high price. The intuition is to find the diameter of the
system which can be thought of as the longest depth to ex-
hibit any counterexample. In practice, however, this value
is often too large for effective analysis.

To mitigate the “depth-explosion” of BMC for the verifi-
cation of state invariants, an adaptation of mathematical
induction was proposed in which, under favorable circum-
stances, no exhaustive exploration of the state space is needed
[17]. Despite the practical success of k -induction, the appli-
cation of this approach is limited by the fact that the proof of
valid invariants might fail due to spurious counterexamples.
Such runs are false negatives because they lead to unreach-
able states and are thus invalid executions of the system. A
possible solution is to increase the induction depth, which,
however, does not scale since the best known SAT algorithms
are exponential in the number of input variables. This solu-
tion, even if the complexity of SAT was manageable, might
not work for systems with infinitely long paths if a spuri-
ous counterexample exists for any large k. As an alternative
solution, invariant strengthening has been proposed which
constrains the input formula of the SAT solver such that
no spurious counterexamples are generated and soundness
of the algorithm is maintained (e.g., [9]). The contributions
of this paper are to (1) present a new method of invariant
strengthening, which can be used in conjunction with other
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Figure 1: Comparing strengthened transitions with
other methods

existing techniques, to (2) show an implementation of the
proposed general technique, and to (3) demonstrate its prac-
tical usability in protocol verification.

1.1 Positioning the Method and Related Work
The verification of a safety property p is to decide whether
every reachable state satisfies p. The different methods of
induction-based safety verification can be categorized based
on how the verification problem is (re-)formulated (Figure
1).

Assume that k -induction returns a counterexample which
starts in the non-reachable state s0 and reaches sk after k

steps such that the goal invariant (denoted by p) is violated
in sk (see Figure 1). This is a spurious counterexample be-
cause sk is not reachable. If such a run exists, we say the
property p is non-inductive. As a general solution, invari-
ant strengthening was proposed where q (the strengthened
invariant) is assumed to be inductive and p can be proven
if q implies p. The question is how to obtain q? The differ-
ent approaches can be classified as bottom-up or top-down.
The first class only considers the given program, the ap-
proaches in the second class are guided by the goal assertion
p. System-independent solutions for both classes are given
in [13]. Specific knowledge about the system can also be
used to find the appropriate q (e.g., see the study about the
analysis of protocols for low-level data transmission [5]). An-
other systematic approach, called conjunctive invariants [9],
uses the spurious counterexample to rule out s0 as a possi-
ble state and derives the strengthened invariant q = p∧¬s0.
The execution of k-induction can be preceded by a BDD-
based pre-image computation of the undesired states (target
enlargement) [1]. The predicate describing the states that
can reach the target t0 in l steps can be used to strengthen
the invariant1. Another form of strengthened invariants is
to prove the invariants of auxiliary formulas (defined as a
lemma) and discard spurious counterexamples that contra-
dict any of the lemmas.
A different strategy is using disjunctive invariants where the
invariant of the system is built incrementally such that it is
weakened every time k -induction finds a valid counterexam-
ple [15]. For example, qk is a reachable state from initial

1The parameter l can be tuned such that the BDD compu-
tation is still effective.

state q0 and the fact that qk violates p proves that p is not
an invariant of the system. Property p is now extended
such that all configurations in the set of reachable states are
covered. Another approach is using interpolants which are
over-approximations of the set of reachable states; approxi-
mations are computed based on the unsatisfiability of reach-
ing a violating state after up to k steps [14]. Interpolants are
inductively computed (starting with the initial set of states)
such that the resulting set is an over-approximation of the
set of states reachable in i steps (i < k). It is guaranteed
that the invariant is true when a fixed-point is reached. The
motivation of using interpolation instead of k-induction is
that the depth k needed for the first one is, in general, sig-
nificantly smaller. However, not all bounded model checkers
implement the interpolation algorithm.

We propose to strengthen the state transition relation of the
system such that, for a sufficiently large k, system execu-
tions starting from unreachable states (spurious counterex-
amples) are ignored during the induction step. Note that,
although our method resembles invariant strengthening, it
does not bound the state space (by ruling out unreachable
states) but limit the space of trajectories instead. Our tech-
nique is bottom-up in the sense that it does not depend on
the property under verification. The previous approaches
(except of interpolation) do not contradict with strength-
ened transitions, hence, hybrid algorithms can be directly
derived. For example, properties proven via strengthened
state transitions can be used as lemmas in subsequent proofs,
or disjunctive invariants can be proven based on a system
with a strengthened transition relation. Interpolation, on
the other hand, uses fixed-point calculation rather than in-
duction as proof method; therefore, techniques towards in-
ductive invariants are not directly applicable here. Note
that our method, if successful, runs k -induction only once,
whereas other induction-based approaches use failed proofs
or pre-analysis before the property can be proven.

We present a general framework which uses k-induction as
verification method and strengthens the state transition re-
lation of the system. We prove that the framework, when
used for verification, (i) might enhance the completeness of
k-induction and (ii) preserves soundness. Analogous to in-
variant strengthening, the main challenge is to invent how
to obtain the strengthened state transition relation. As a
special case, we show how the Boolean guards of the sys-
tem’s transitions can be modified to strengthen the state
transition relation. For this method to work, we make the
assumption that the control flow of the system is (at least
partially) known. This technique is demonstrated through
the next simple example.

1.2 A Short Example: the Bakery Protocol
We show how strengthened guards can be used to model
check a simplified version of Lamport’s Bakery protocol [11].
We use SAL’s implementation of k -induction [8] which ap-
plies none of the techniques mentioned above. As the Bakery
algorithm works with infinite domains (the ticket number of
a process can be any natural number), we use SAL’s infinite
bounded model checker (sal-inf-bmc) for verification2. The

2sal-inf-bmc makes calls to the Yices [8] Satisfiability Mod-
ulo Theories (SMT) solver which can also handle infinite
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1 bakery: CONTEXT = BEGIN
2 PC: TYPE = {sleeping, trying, critical};
3 job: MODULE =
4 BEGIN
5 INPUT y2 : NATURAL
6 OUTPUT y1 : NATURAL
7 LOCAL pc : PC
8 INITIALIZATION
9 pc = sleeping;
10 y1 = 0
11 TRANSITION
12 [ pc = sleeping --> y1’ = y2 + 1;
13 pc’ = trying
14 []
15 pc = trying AND (y2 = 0 OR y1 < y2)
16 AND y1 > 0 %STRENGTHENED GUARD
17 --> pc’ = critical
18 []
19 pc = critical --> y1’ = 0;
20 pc’ = sleeping ]
21 END;

22 system: MODULE =
23 job
24 []
25 RENAME y2 TO y1, y1 TO y2 IN job

26 mutex:THEOREM system
27 |- G(NOT(pc.1 = critical AND pc.2 = critical));
28 END

Figure 2: The SAL model of the Bakery protocol

SAL code of the protocol with two processes is depicted in
Figure 2. The protocol’s main property, mutual exclusion
(mutex), is defined as an invariant saying that it is never
true that both processes are in the critical section at the
same time.

SAL cannot prove mutex using the default depth 10. A spu-
rious counterexample of length 10 is produced starting from
a state where the 1st process has pc=trying, y1=0. This
is not a reachable state because every process increments
its ticket when changing from sleeping to trying (line 12-
13). As a result, the system reaches a state which violates
mutual exclusion. Note that the original model cannot be
proven with any depth. Therefore, it does not help increas-
ing k to any large number. This can be seen by consider-
ing that the state where the two processes have respectively
pc.1=trying, y1=0 and pc.2=trying, y2=1 is a recurring
one because the 2nd process returns to the same state if it
first enters the critical section. As a result, a counterexam-
ple similar to the previous one can be produced for any value
of k. We propose to strengthen the state transition relation
such that the spurious counterexample is not a possible run
of the system. We do it by simply adding a new clause to
the guard of the transition that drives the process into the
critical section (line 16). The new condition requires that
y1 is always positive when the process is at pc=trying. The
theorem can now be proven.

Our observation is that the previous solution gives rise to a
general approach if the system follows a strict control flow.

domains. We note that in the context of this paper, SAT
and SMT solvers are conceptually identical in that they both
decide satisfiability of logical formulas.

The idea is to use the updates in the previously executed
transitions for strengthening the guards. In particular, each
Bakery process periodically alternates between sleeping,
trying and critical. Therefore, we can safely state (with-
out changing the specified behavior) that the assignment of
y1 at line 12 is still valid at line 16.

Paper structure. First we establish a general framework of
transition strengthening (Section 2), then we present strength-
ened guards as a special case (Section 3). Finally, we use
strengthened guards to formally verify a diagnosis protocol
with more than 150 lines of SAL code and compare our tech-
nique with other approaches (Section 4).

2. A SIMPLE FRAMEWORK
We first formally define the system, its properties and the
applied proof method (Section 2.1), then a general technique
is presented and its properties are formally proven (Section
2.2).

2.1 Preliminaries
Assume that the system is defined as a general state transi-
tion graph with tuple M = (S, I, R, L). As usual, S denotes
the set of states, I ⊆ S the set of initial states, R ⊆ S × S

the state transition relation and L : S → 2AP the label-
ing function (AP is the set of atomic propositions). For
simplicity, we use the notations I(s) iff s ∈ I, R(s, s′) iff
(s, s′) ∈ R. A path in M is a sequence of states s0, ..., sk

iff R(si, si+1) for all 0 ≤ i < k. Note that this defini-
tion of path does not require the first state to be an ini-
tial state. We use the predicate path(s0, ..., sk) to designate
paths. Furthermore, we define the set of reachable states in
M as ReachM = {s|I(s)∨∃s0, s1, ... : I(s0)∧path(s0, ..., s)}.

Properties are formulas that are defined based on the for-
mal definition of the system. We restrict to state invariants
(or simply invariants) which are true in all reachable states.
Formally, invariants can be defined over AP using the stan-
dard Boolean operators. We use the shorthand P (s) such
that the predicate is true iff p holds in s, i.e., the atomic
propositions in L(s) satisfy p. A state s is called P-state iff
P (s) holds.

We assume that k-induction is used to verify invariant p

in system M . Before giving the formal definition of k -
induction, we describe it informally. The intuition is to check
that paths of length k starting from an initial state visit only
P-states. If it is not always the case, a counterexample of
length k is found. The dilemma is to determine the value
of k such that the invariance of the property can be safely
established. The strategy is to check whether there exists a
(k+1)-long path starting from an arbitrary state and leading
to a non-P-state. If not, we can safely stop since all shorter
paths have already been checked. Otherwise, the value of
k needs to be increased [17]. Note that this method cor-
responds to the generalization of the simple induction rule
which first states that the invariant includes all initial states
(base case), then it proves that the invariant is closed on
the transitions (inductive step). For the formal definition
of k -induction we use the one taken from [9]. The proof is
parameterized with a system M , depth k and property p. A
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k -induction proof instance is denoted by INDM (k)(p) and
is true if the following two predicates hold for all s0, ..., sk.

Base case: I(s0)∧path(s0, ..., sk−1) → P (s0)∧...∧P (sk−1)

Induction: P (s0)∧ ...∧P (sk−1)∧ path(s0, ..., sk) → P (sk)

Note that there is no need to explicitly search for paths
shorter than k if we can assume that the system is live. In
this case, violating paths of length < k are also checked by
INDM (k).

Finally, a proof method is called sound, if the fact that it
proves p in M implies that p is indeed true in M . It has
been shown that k-induction is sound with respect to state
invariants [17, 9]. Furthermore, a proof method is complete
if every property p which is true in M can be proven by
the method. There have been several attempts towards the
completeness of k-induction. In worst case, exhaustive ex-
ploration can be used if there is an upper bound on the
length of the possible trajectories of the system. It is of-
ten possible to find such an upper bound even in systems
with infinite paths. For example, path compression can be
used to make sure that a trajectory only visits “new” states
[9]. As the most common special case, only loop-free paths
are considered. In this case, an alternative induction step
is to check that no (k + 1)-long loop-free path starts form
an initial state [17]. Consequently, we can conclude that all
loop-free paths are covered by the base case and the entire
reachable state has been explored. Formally, the definition
of path predicate needs to be modified if compressed paths
are used. Although our technique works with all known op-
timizations, it is not dependent of any of them, therefore,
they are omitted in the formal discussion.

2.2 k-Induction with Strengthened Transitions
We define a new system based on the original specification
which will be used during the verification. The intuition
is to constrain the state transition relation such that the
observable behavior of the system remains the same. In
this paper, we concentrate on state invariants, therefore, the
preservation of the behavior corresponds to having the same
set of reachable states in both systems. Next, we define
systems with strengthened transitions in a declarative way,
i.e., without discussing how the conditions can actually be
fulfilled. We will show an implementation of such systems
in Section 3.

Definition 1. M ′ = (S, I, R′, L) is a system with strength-
ened transitions with respect to M = (S, I, R, L) if R′ ⊆ R

and ReachM = ReachM′ .

The next simple theorem claims that a system with strength-
ened transitions might improve but never weakens complete-
ness of k -induction. This is equivalent with showing that the
set of provable invariants in M is never greater than that in
M ′. In general, full completeness is not reached, therefore,
both sets are a subset of the set of all invariants in M .

Theorem 1. The completeness of k-induction in a sys-
tem with strengthened transitions can be characterized as
follows.

{p|INDM (k)(p)} ⊆ {p|INDM′(k)(p)} ⊆ {p|M |= Gp}

Proof. Assume that p is an invariant. From Definition
1, M and M ′ entail the same set of reachable states. There-
fore, the base case of INDM (k)(p) is true iff it is true in
INDM′(k)(p). As R′ ⊆ R, path(s0, ..., sk) in M ′ implies
path(s0, ..., sk) in M , thus, INDM (k)(p) implies INDM′(k)(p).
We have proven that if k -induction can verify p in M it can
also prove it in M ′. We now show that it is possible that {p|
INDM (k)(p)} ⊂ {p|INDM′(k)(p)}. Assume that ¬P (sk),
path(s0, ..., sk) in M for some s0, ..., sk but ¬path(s0, ..., sk)
in M ′ for any s0, ..., sk. This is possible if R′ ⊂ R. Finally,
we prove that general completeness cannot be guaranteed.
Assume ¬P (sk) and path(s0, ..., sk) in M ′. In this case,
INDM′(k)(p) is false even if p is an invariant.

2.3 Discussion

Refutation. In general, better completeness with strength-
ened transitions comes at a price. Since the new transition
relation is restricted with respect to the original one, it is
possible that the shortest path between two reachable states
s0 and s increases from k (in M) to k′ > k (in M ′). As a
result, the base case of the induction might find counterex-
amples with greater depths. For example, assume that P (s)
does not hold and k′ is the length of the shortest path to s in
M ′. In this case, a counterexample in M ′ can only be found
with depth k′, whereas, it suffices to use depth k in M . As
finding counterexamples quickly is particularly important in
early phases of the system development, we propose using M

for refutation and M ′ for verification. However, making this
differentiation is not always needed. In the next Section, we
show an implementation of transition strengthening which
never degrades the method’s ability to disprove invariants.

Soundness. We remark that our method, while improving
completeness of k-induction under favorable circumstances,
preserves the general soundness property. This directly comes
from (i) the restriction to state invariants and (ii) the con-
dition that the new system must entail the same space of
reachable states. Accordingly, if a state s is reachable in M

it is also reachable in M ′, therefore, any state invariant is
true in M iff it is true in M ′. The last statement and the
fact that k-induction is sound imply that the verification of
M via M ′ is sound.

3. AN IMPLEMENTATION
Previously, we introduced a theoretical framework to en-
hance the completeness of induction-based BMC. The main
premise was that it is possible to create a system with strength-
ened transitions. But how can we do it in practice? In this
section, we give a solution as a possible implementation of
the general framework. The heart of the solution is the as-
sumption that a fixed control flow of the system exists.
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3.1 Preliminaries
To ease further discussion, we use interpreted first order
formulas to describe the system. The predicates and func-
tion symbols as well as the translation from (and to) the
tuple-based representation of Section 2 are defined similarly
to those in [6]. Let V = {v1, ..., vn} be the set of system
variables. Variables range over a finite domain D. A state
s : V → D is interpreted as a valuation of V assigning val-
ues from D to a subset of variables. I denotes a first order
formula which is only true for valuations representing ini-
tial states. R(V, V ′) is the formula which corresponds to the
transition relation. Variables in V are thought of as current
state variables and those in V ′ are the next state variables.
The formula is true if the valuations of V and V ′ represent
a current and next state of the system. Finally, properties
are defined based on atomic propositions of the form v = d

where v ∈ V and d ∈ D. A proposition is true in a state s

if s(v) = d.

Using guarded commands is a common way to describe a
system’s transitions. The simple example of Figure 2 also
used guards to rule the execution of transitions. The next
values of variables can be updated whenever a guard con-
dition based on current values is true. In general, we can
assume that the transition formula implements the following
template: (guard1∧update1)∨(guard2∧update2)∨..., where
guardi is restricted to be defined over V . We say that the
system is defined with guarded commands if R(V, V ′) imple-
ments the previous template. In addition to the definition
of all possible state transitions, a scheduler is attached to
the system to decide which transitions are executed and in
which order. For example, it is the scheduler’s job to re-
solve conflicts when more than one guard is enabled. The
SAL scheduler, for example, selects one of the enabled tran-
sitions non-deterministically or, if none of the guards is true,
it executes the default transition if it is defined (using the
ELSE keyword). The system deadlocks if no transition can
be executed.

3.2 Execution Plan: Fixed Control Flow
Our implementation of systems with strengthened transi-
tions is based on the assumption that the control flow of
the system is a-priori known. For example, in the Bakery
protocol each process executes the same transitions in the
same order. More generally, we assume that an execution
plan is available which contains information about the or-
der of executed transitions. Let transi denote the formula
(guardi∧updatei). In the simplest case, an execution plan is
a sequence of positive integers i1, i2, ... meaning that transij

is the jth transition executed by the system. We call it to-
tal execution plan. However, even if a system adheres to a
control flow, partial non-determinism is possible. Therefore,
we define partial execution plans to be a similar sequence of
numbers with the guarantee that transik

is executed after
transij

iff j < k. We allow multiple partial execution plans
for the same system, however, with the restriction that they
contain distinct transitions. This makes sense otherwise
there was an uncertainty about what transitions are pre-
ceded by the one appearing in multiple plans. For example,
the Bakery protocol with two processes can be associated
with two partial execution plans each of them containing the
three transitions between lines 12 and 20 (Figure 2). Note
that it is not possible to associate a total execution plan with

Figure 3: Execution plans and actual executions

the Bakery protocol as the participating processes execute
transitions asynchronously without an a-priori global order
of transitions.

Denote the sequence a1, a2, ... an actual execution where
transai

is the ith transition executed by the system. The
actual execution models an arbitrary run of the real system.
The relation between execution plans and actual execution
is depicted in Figure 3.

3.3 Strengthened Guards
The main idea of strengthened guards is to prune some of the
impossible behavior by taking into account the scheduling of
the transitions in the real execution of the system. We only
make a natural assumption to require that a transition can
only be executed if its guard is true. To eliminate impossible
runs we use the updates of previously executed transitions to
strengthen the guard. If the system adheres to the execution
plan the new guard will be true exactly when the old one
is true because no further updates have been done to the
variables. In k -induction, the values of state variables in
spurious counterexamples are usually not in accordance with
the execution plan. Consequently, such runs can be ruled
out by using strengthened transitions.

The first solution is to replace the original guard guardi

with guardi ∧ (
∨

updateij−1
) for all ij = i in the execution

plan. It is possible that a transition is preceded by different
transitions in the execution plan. Therefore, we add all of
them such that only one needs to be true. If a transition
is executed as first, the possible initial assignments can also
be added to the strengthened guard. Since execution plans
are disjunct or total, at most one execution plan is used for
the replacement of a guard. Before formally defining the
strengthened system, consider the following two issues.

• Formally, updatei is defined over V and V ′. There-
fore, its syntactical rewriting is needed when used in a
guard because guards can only use current state vari-
ables. For example, the update y1’=y2+1 can be used
as y1=y2+1 in the strengthened guard. However, this
is not correct if current state variables that are used in
the assignment are modified by the same update. In
the previous example, changing the value of y2 would
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mean that y1=y2+1 will not be true. In general, if vari-
able v is used as both current and next state variable
by the same update, its old value stored in an (aux-
iliary) variable v old can be used in the strengthened
guards (e.g., y1=y2_old+1 in the previous case).

• We have to be careful with partial execution plans be-
cause transitions that are not part of the plan can
modify the assignments with respect to the ones in
updateij−1

. For example, the update y1=y2+1 could
not be directly used to strengthen the guard in line
15 (Figure 2) because the other process might change
y2 in the meanwhile. Therefore, for the general case,
we assume that there is a function fun which extracts
the possibly strongest condition which can be safely
used to strengthen the guard; fun takes an update
as input and returns a formula over V . For exam-
ple, in the strengthened version of the Bakery proto-
col, fun(y1′ = y2 + 1) returns y1 > 0 to use it for
strengthening the guard at line 15. Techniques for im-
plementing fun in an effective and automated way are
part of our future work (see Section 3.6 for more).

The system with strengthened guards M ′ can now be defined
based on the original specification M of the system. Note
that the transformation from M to M ′ can be automated if
we suppose that the function fun and the execution plans
are given.

Definition 2. Supposed that executions plan(s) i1, i2, ...

of a system with guarded commands, described with I and
R(V, V ′), are available; the system with strengthened guards
is described with I and R′(V, V ′) such that every guardi in
R(V, V ′) is replaced by guardi∧(I∨

∨
fun(updateij−1

)) for
all ij = i, j > 1. The strengthened guard only includes I if
i1 = i.

We claim that Definition 2 is a special case of Definition
1. Therefore, the result of Theorem 1 and the discussion in
Section 2.3 is valid.

Corollary 1. Assume that a system A is defined with
guarded commands. The system A with strengthened guards
(call it A′) is a system with strengthened transitions with
respect to A if A′ is scheduled as A.

Proof sketch. Assume that A and A′ are represented
by tuples M = (S, I, R, L) and M ′ = (S, I, R′, L) respec-
tively. This assumption is valid because Definition 2 only
modifies R(V, V ′). By intuition, R′ ⊆ R because guards
are never weakened and A and A′ share the same sched-
ule (see Section 3.4 for more details). We have to prove
that ReachM = ReachM′ . Assume that the execution plan
i1, i2, ... is total. In this case, fun(updateij

) = updateij
.

For every reachable state s in M , there is s0, s1, ... such that
I(s0) and path(s0, ..., s). We use induction by the position
of states in the path. I(s0) is true in both M and M ′. sj

is computed by executing guardij
∧ updateij

. The same sj

can be computed by transij
in M ′ if guardij

∧ updateij−1

(the strengthened guard) is true. The condition is indeed

true because updateij−1
represents the assignments in sj−1

which is the current state. If the current state is an initial
state, guardi1 ∧ I is true. If the execution plan is not total,
the proof is dependent of the implementation of fun. As-
suming that fun(updateij

) = updateij
, the proof is similar

to the one presented above.

Note that our technique does not eliminate transitions, it
only strengthens the guards. Since every new guard is triv-
ially true on paths starting from initial states (this is guar-
anteed by construction), valid counterexamples can be found
with the same depth as for the original system. Therefore,
unlike in the general case (see Section 2.3), there is no need
to use the original system for seeking counterexamples. In
the next Section, we explain why Corollary 1 makes the as-
sumption on the schedule of transitions.

3.4 Preserving Execution Semantics
We say that a system with strengthened transitions A′ is
scheduled as the original system A if they execute the same
sequence of transitions if possible. This ensures that if a
strengthened guard is not true then no other transition is
taken and the execution stops, i.e., no path of depth k exists.

Note that the scheduler which triggers the execution of tran-
sitions might prevent the previous condition from being true.
It is the core of our technique that the execution stops if
a transition which is supposed to be executed is not en-
abled. However, the scheduler might select another transi-
tion which can be alternatively executed. In SAL, for exam-
ple, having the default transition might cause the strength-
ened system to explore states that are not entailed by the
original system. There are two options to circumvent the
undesired interplay of the scheduler. In theory, it is possible
to directly translate the specification into the tuple-based
representation without using the built-in scheduler of the
execution environment. This solution is cumbersome and
can only be viable if the process of translation is fully auto-
mated. Another option is to use the scheduler at hand and
enforce it to implement the desired schedule. Usually it is
not a hard thing to do. For example, ELSE-branches can
easily be eliminated from the original SAL specification by
replacing them with regular guarded commands. We show
an example of how to do it in Section 4.

3.5 Optimizations
Usually, an update only changes the assignment of a real
subset of all state variables instead of changing each of them.
Therefore, guards can be further strengthened with updates
that are not defined by direct predecessors of a transition
plan but whose assignments (or some of them) are not changed
by the subsequent transitions.

Another refinement of our basic technique is to strengthened
guards based on variables (say v old) that store old (e.g.
the previous) values of another variable (v). In this case,
the assignments of v can be used in guards even if value of
v has already been re-assigned. It is also possible to store
more than one old value (i.e., from different states) of the
same variable. In this case, a good tradeoff has to be found
between the overhead of the verification and the benefit of
using strengthened guards. Note that v old is not necessarily
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an auxiliary variable of the system that is only introduced to
implement strengthened guards. It is a common technique
to use such variables in order to express liveness properties as
invariants. Variables storing earlier values of other variables
can also be a functional part of the system’s model if some
correlation between the current and previous values needs
to be established. Our case study shows an example of both
optimization techniques.

3.6 Discussion

Transition-validated assertions. The technique of tran-
sition validated assertions (TVAs) is a bottom-up approach
for strengthened invariants [13]. By definition, a TVA is an
invariant q such that updatei → q for every transi interfer-
ing with q. Accordingly, every TVA is 1-inductive and can be
used to strengthen the original property p. Our technique of
strengthening the guards based on a fixed control flow can be
expressed via TVAs as well. Assume that the transitions of
the system are uniquely labeled. For example, transi can be
labeled by i. In the Bakery example, the values of pc.1 and
pc.2 provide an appropriate labeling. Labels serve, besides
providing the means of identifying statements, as locations
of control. Note that a location can designate more than
one label at the same time. For example, if the control of
the Bakery protocol is at pc.1=sleeping, it might be also at
pc.2=trying. Let the auxiliary predicate l(i) be true iff the
control is at transi. For simplicity, denote the strengthened
guard of transi by guardi ∧ (

∨
rewr update). Accordingly,

the formula l(i) → (
∨

rewr update) is a TVA because ev-
ery update that might lead to location described by l(i) is
included in (

∨
rewr update). This is guaranteed by the ex-

ecution plan. It can be seen the formula is still 1-inductive
if our optimization of using earlier updates to strengthen a
guard is applied (see Section 3.5).

Our work differs from TVAs in that it is presented in the
context of strengthened transitions. Even though strength-
ened guards and TVAs are logically equivalent, their im-
plementation can entail different overheads as shown in our
case study. Furthermore, we use execution plans to derive
strengthened guards which can be automated or easily im-
plemented by the user.

Control flow-determinism. One might argue that an exe-
cution plan about the system does not exist or is unknown.
In fact, strengthened guards are useless in the former case.
However, we believe that a static sequence of actions in the
system’s execution can be observed for a variety of appli-
cations. For example, safety-critical embedded systems uti-
lize deterministic protocols like diagnosis, membership [16]
or startup [19] for predictability. We also think that execu-
tion plans can be, in many practical cases, easily determined
based on the system’s specification. For example, the exe-
cution plans of the Bakery protocol can be obtained from
its original description [11] without the need of understand-
ing how the protocol works: the specification of each pro-
cess is given as a sequence of actions which corresponds to
partial execution plans. In other cases, the implementation
restricts the unconstrained schedule of the high-level formal
description. For example, the compiler injects control flow
information of the hardware design with respect to the ab-

stract functional specification on which the formal analysis
is performed [18]. Therefore, the guards in the specification
can be strengthened if we know what the compiler does in
synthesizing the schedule. The automation of determining
the control flow is part of our future work.

Update rewriting. Although the implementation of fun is
kept open as future work, we speculate about some aspects
of its possible automation. Given an update upd, we look
for the result of fun(upd) to strengthen the guards in ac-
cordance with the execution plan(s). Call a variable in V ′

stable with respect to upd if its value remains unchanged
until the execution of the strengthened transition. Other-
wise, the variable is called unstable. Now, fun(upd) is the
identity function if all variables of V ′ appearing in upd are
stable. This means that upd can be used in the strength-
ened guard after the trivial syntactical rewriting described
in Section 3.3. Otherwise, the empty constraint (true) can
be used which corresponds to discarding upd. Decision pro-
cedures can be used to obtain more sophisticated solutions.
For example, unstable variables in upd can be replaced by
symbolic constants and automatic static analysis can be used
to derive a provably valid but non-empty constraint. In the
example of the Bakery protocol, considering the domain of
the variables, fun(y1′ = y2 + 1) = (y1 > 0) can be com-
puted without knowing the value of y2.

4. EXECUTION PLANS IN SAL: VERIFY-

ING A REAL PROTOCOL
As a proof of concept, we use execution plans to verify a
diagnosis protocol with the SAL model checker. The tech-
niques of strengthened guards, transition-validated asser-
tions and lemmas are compared. Our experiments show
that all techniques are able to prove the properties that are
non-inductive in the original model. However, additional
overhead is induced due to the manipulation of the model.
Using strengthened guards, the pure execution time of the
k-induction rule is the shortest among all applied techniques.

In the remainder of this Section, we first briefly describe the
subjected protocol and its implementation in the SAL lan-
guage (Section 4.1), then we present how different techniques
can be implemented to reduce the depth of k-induction based
on the a-priori known control flow of the system (Section
4.2). Finally, we compare the performance of these tech-
niques using the BMC model checker of the SAL environ-
ment (Section 4.3).

4.1 Diagnosis with Hybrid Faults
Diagnosis is a service that is able to locate faults in a system.
In our case study, we use a distributed diagnostic proto-
col applicable in synchronous environments3. The execution
model is that the nodes proceed through a parallel sequence
of rounds such that each round is split into communication
and computation phase. The algorithm is based on round-
based consensus with malicious (aka. Byzantine) faults [12].
The plain model of worst-case faults is augmented with other
less severe faults such as benign faults or symmetric value

3Communication based on message sending is assumed
where correct nodes are able to send and deliver a message
on time.
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faults. A benign node executes the protocol but it is un-
able to send a message or sends wrongly formatted data. A
symmetric node is malicious faulty with the restriction that
it sends the same message to everyone. The benefit of the
hybrid fault model is that it entails enhanced fault toler-
ance with the same number of replicas. The protocol used
in this case study, called hybrid diagnosis (HD), executes
consensus on the local syndromes about the health status
of the system [20]. It guarantees that, under the fault hy-
pothesis, (i) all non-faulty nodes agree on the diagnosis of
the system (consistency), (ii) all benign faults are eventu-
ally detected (completeness) and (iii) non-faulty nodes are
never diagnosed faulty (correctness). The fault hypothesis
defines that the overall number of nodes N is greater than
(2a + 2s + b + 1) where a, s and b denote the number of
malicious, symmetric and benign faults, respectively.

The basic assumption of the protocol is, besides synchrony,
that distributed nodes can run computation and send/receive
messages in parallel with each other. This might not be the
case in systems where resources are shared to reduce cost.
Consequently, the protocol (e.g., [16]) and its formal model
must be modified to accommodate the conditions. We re-
mark that the latter is not always needed. For example, the
same model of the presented protocol can be used even if
the system uses a shared communication bus and if different
applications run on the same computer [4]. This is achieved
by using an abstraction and showing a bi-simulation between
the abstracted and the original models.

The protocol. The SAL language allows the user to define
modules which can be thought of as building-blocks of the
overall model. The model of the protocol contains two mod-
ules, one describing the fault model, the second defining the
protocol’s operations executed by the distributed nodes. As
every node is supposed to execute the same code, the mod-
ule defining the protocol is parameterized with the ID of the
corresponding node. We use SAL’s guarded commands to
identify the different stages of the protocol and to execute
the part of the code which is associated with that stage. Ad-
ditional stages are defined when auxiliary operations (e.g.,
fault generation) are being computed which cannot over-
lap with the protocol’s operation. In accordance with the
synchrony assumption, the modules are composed together
using SAL’s synchronous composition. This ensures that
transitions are executed in a lock-step manner, i.e., the exe-
cution stops unless an enabled transition can be selected in
every module and the selected transitions can be executed
following parallel execution semantics (non-conflicting up-
dates, etc.) [7]. Recall that the Bakery example of Section
1 used asynchronous composition, where only one transition
is selected and executed at each step of the model4.

The protocol HD is a sequential and periodic execution of
the following two rounds:

4We remark that SAL’s different composition semantics can
be considered as instructions for compiler about how the
transition relation is calculated.

Variable Stage Dependency Valid at stage

1-3ls_symm’ 0 fvec
(+0 w/ fvec_old)

1-3ls’[i] 0 fvec
(+0 w/ fvec_old)

fvec
sm’[i] 1 ls[1..N]

2-3

ls_prev[1..N]
(+0 w/ fvec_old)

chv’[i] 2 sm[i] 3,0,1
0,1-3fvec’ 3 fvec

(all w/ fvec_old)

Table 1: Variables and their dependencies in the
SAL model of the HD protocol: N is the number of
nodes, var[i] denotes var at node i and the primed
version of a variable means its next value.

Round 1

1. Sending workload (communication): every node i broad-
casts a message.

2. Local detection (computation): every node i diagnoses
the other nodes based on the messages received from
them and forms a local syndrome (ls[i]) indicating
the health status of each node. The jth value of this
vector is 0 if node j is diagnosed faulty and 1 if it is
correct.

Round 2

2. Global dispersion (communication): every node i broad-
casts its local syndrome.

3. Global assimilation...: the local syndromes received
from the other nodes, together with the syndrome ob-
tained in Round 1, are compiled into a syndrome ma-
trix (sm[i]). The jth row of the matrix is the local
syndrome received from node j.

4. ...and analysis (computation): Every node i computes
hybrid majority on the values of each column in the
syndrome matrix and derives a consistent health vector
(chv[i]).

The protocol uses a special form of majority function, called
hybrid majority, where wrongly formatted (i.e., semantically
incorrect) local syndromes and the node’s opinion about it-
self are omitted in the voting; the default outcome is “cor-
rect” if no value is in majority.

Table 1 depicts the variables that are used to encode HD in
the SAL language5. The different stages indicate the pro-
tocol’s steps and auxiliary operations. The current stage
is stored in a control variable called pc (program counter);
this variable is re-set to 0 when it reaches 3 to enable pe-
riodic execution. In addition, the following variables are
defined: the fault vector (fvec), its old value (fvec_old)

5The source of models in this Section are
available at http://www.deeds.informatik.tu-
darmstadt.de/peter/sal/sources. The model of the
HD protocol can be found under diagnosis.sal.
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and a variable to store semantically incorrect but symmet-
rically disseminated local syndromes (ls_symm). The fault
vector is updated at the end of each round such that the
fault hypothesis is satisfied. It is assumed that, in each in-
stance of the protocol, a node can be faulty according to
at most one fault class. For example, it cannot be that a
node is benign faulty at round 1 and Byzantine during round
2. The variable ls_symm contains the local syndrome that
a symmetric faulty node sends to the other nodes. In our
experiments, we only verify systems with N < 6; therefore,
it suffices to have just one such a vector since s (the number
of symmetric faults) is at most one. Note that overlapping
instances of the protocol can be executed. This means that
in every communication round k instance A executes Round
2 and another instance B launches the protocol by executing
Round 1. Consequently, in our SAL model, the syndrome
matrix of node i (sm[i]) is not updated based on the local
syndromes of this round but on those from the last round
(ls_prev[1],...,ls_prev[N]).

Properties. We define all three properties of the HD proto-
col: consistency, correctness and completeness. Consistency
can be naturally defined as a state invariant because it re-
quires that the consistent health vector is consistent among
the nodes at the termination of each instance, i.e., at stage 3.
Since the protocol terminates after Round 2, liveness prop-
erties have to be verified with one round delay. Accordingly,
correctness requires that no node that was correct during
round (k − 1) is diagnosed as faulty in round k; complete-
ness means that every benign fault occurring in round (k−1)
must be detected at round k. It is possible to define correct-
ness and completeness as invariants as well, if we store the
fault vector of the previous round. For example, diagnosis
can be defined as follows (chm[i] corresponds to chv[i]):

diagnosis_completeness: THEOREM system |-
G(FORALL(l,m:nodes):pc=3 => (

fvec_old[l]=benign => chm[m][l]=0));

4.2 Inductive Invariants with Execution Plan
If the control flow of the system is a-priori known, the sys-
tem’s model can be modified such that the properties of the
system (expressed as invariants) are more likely to inductive.
The presented model of the HD protocol gives rise to a total
execution plan. This is because the protocol is fully deter-
ministic, the modules of the SAL model are connected via
synchronous composition and the auxiliary operations (the
updates of fvec and ls_symm) do not cause non-determinism
in the control flow. Given that one is implemented via four
stages, the jth transition in the execution plan is always the
transition guarded by stage j modulo 4. Note that, although
the existence of total execution plans requires that the con-
trol flow is deterministic, the data flow can contain non-
determinism. For example, our model non-deterministically
generates local syndromes of Byzantine nodes, the activation
of faults, etc.

Strengthened guards. We have implemented a model of
the HD protocol with strengthened guards. The complete
model is available in the source file diagnosisSG.sal. Now,

we discuss the outline of our implementation. The technique
of strengthened transitions is based on restricting the global
transition relation. In case of synchronously composed mod-
ules, the global transition relation can be derived from the
corresponding transitions of the modules. Since a module
is only allowed to update local variables (which might de-
pend on input variables), it is possible to strengthen the
guards “locally” in each module. For example, this is how
we strengthen the guard pc=3 with the assignment of chv

from the last transition (note that the update part of the
transition is empty because stage 3 is an auxiliary transi-
tion to update the fault vector in the fault module):

pc=3
%---- Guard strengthening STARTS --
AND chv=[[n:nodes] h_maj(sm)[n]]
%---- Guard strengthening ENDS ----
-->

We do not use SAL’s ELSE branch in the model to preserve
execution semantics. The program is forced to execute the
transition (at stage 0,1,2 or 3) determined by the execu-
tion plan. Otherwise, the program’s execution is blocked.
Once again, this does not happen in regular runs, i.e., when
the the program is started from a proper initial state. We
applied the optimization when updates that are not in di-
rect predecessors of a transition are also used to strengthen
the guard of that transition. Table 1 helps determining the
strengthened guards that can be used at different stages of
the protocol. The third column depicts the dependencies of
each state variable. An update of a variable can be used
to strengthen a guard until none of its dependencies is re-
updated. For example, chv is dependent of sm which is up-
dated at stage 1. Consequently, the update of chv at stage
2 can be used from stage 3 to stage 1 in the next round.
Furthermore, the updates of variables depending on fvec

can be used in guards even after fvec is updated because
its old version (fvec_old) is also available. Finally, we note
that this example of guard strengthening assumes the trivial
implementation of fun where fun(upd) = upd. This is be-
cause the execution plan is total and the optimization takes
the dependencies into account.

Transition-validated assertions. We have strengthened the
properties of the HD protocol with transition-validated as-
sertions that can be obtained through the total execution
plan. The model and its properties are available in the
source file diagnosisTVA.sal. For a fair comparison, we used
the same assertions that appear in the strengthened guards
of the previous model. For example, the following assertion
corresponds to the guards strengthened at stages 3, 0 and 1
with the update of chv.

pc/=2 => FORALL(m:nodes):
chm[m]=[[n:nodes] h_maj(sm_vec[m])[n]]

Note that auxiliary variables are used to refer to local vari-
ables of parameterized modules (e.g., sm_vec[i] corresponds
to sm[i]). The same model can be used for invariance check-
ing with lemmas. We defined a lemma called TVAs which is
comprised of the TVAs used to strengthen the properties.
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Technique Depth EFA (s) UQ (s) BPCT (s) BFMC (s) BIF (s) SAT time (s) (*) Overall time (s)

- 7 0,11 0,07 0,01 0,23 0,48 0,38 1,46
SG 3 0,24 0,22 0,04 0,42 0,65 0,26 2,52

TVA 3 0,14 0,2 0,3 0,2 1,77 26,22 29,18
Lemma 3 0,15 0,21 0,3 0,2 0,83 9,44 (†) 11,17 + 1,59 (‡)

Table 2: Results of proving consistency of the HD protocol in a 4-node system by using sal-bmc (with Yices
SAT solver). Abbreviations: Expanding function application (EFA), unfolding quantifiers (UQ), Boolean
property conversion time (BPCT), Boolean flat module conversion (BFMC), building induction formula
(BIF) as the time to build the base formula plus the time to build the induction formula. (*) It is the sum
of Yices execution time for the base case and the inductive step. (†) The inductive step took 97% of SAT
time. (‡) The lemma TVAs was proven in 11,17 seconds at depth 1; the consistency property was proven in
1,59 seconds at depth 3. All data in this row correspond to the proof of the lemma.

4.3 Experiments

Reduced induction depth. We verified the properties of
the HD protocol in systems where N < 6 by using the mod-
els presented in the previous Section. For example, consis-
tency can be proven at depth 3 in the model with strength-
ened guards. The original model fails to prove the property
with the same depth and returns a spurious counterexample.
In our setting, the counterexample starts in a state at stage
0 where the fault hypothesis is violated by fault vector. In
addition, the local syndromes do not correspond to the fault
status of the system. Consequently, since the syndrome ma-
trix and the consistent health vector are computed based
on data that cannot appear in the assumed system, consis-
tency is violated. In the model with strengthened guards,
the transition at stage 0 is strengthened with the assign-
ments of the fault vector and the local syndromes. This
entails that runs similar to the previous one are ruled out
in the inductive step of 3-induction and the property can be
proven. We remark that strengthened guards might be use-
ful even if the property was not inductive. In fact, as a result
of guard strengthening the counterexample resembles more
a valid run and appear less “chaotic” than in case of the orig-
inal model and it helps the user to better understand what
goes wrong in the run. We expect that the other techniques
are able to prove consistency at the same depth. Indeed,
consistency strengthened with the established TVAs as well
as the original consistency property using our lemma could
be verified by 3-induction. In the following, we discuss how
the use of these techniques affect the performance of SAL’s
BMC model checker.

Performance issues. The experiments of verifying consis-
tency, completeness and correctness with different system
size showed similar trends. Table 2 depicts the results of
proving consistency for N = 4. The same induction depths
could be measured for completeness and correctness as well.
The experiments were run on a single processor of a double-
core Intel Xeon 5130 at 2 GHz with 4 GBytes memory.
In this case study, the properties of the protocol could be
proven even in the original model by increasing the induc-
tion depth to at least 7. Table 2 compares the time of ver-
ification with the different approaches. As we can see, the
original model is still the fastest (in terms of overall time)
in spite of the increased depth. However, in general, in-
creasing the depth might not be feasible or might not result
in an inductive invariant. We can also see that the SAL

implementation of strengthened guards (SG) outperforms
that with TVAs. We speculate that this is because of the
ability of strengthening the guards “locally”, i.e., within a
module based. It is very fast to prove consistency by using
the lemma; however, the lemma must be proven separately
which takes approximately six times more than the proof of
the property6. The modified models entail more time to ex-
pand functions (EFA) and to unfold quantifying operators
(UQ) because the strengthened guards and TVAs contain
both function application and quantifiers. The TVA and
lemma techniques spend more time converting the formulas
into a Boolean representation (BPCT) because they use a
modified form of the original property. On the other hand,
the transformation of the modules into Boolean formulas
(BFMC) takes the most time in the SG model because the
strengthened guards augment the transition system of the
original model. Our approach needs the shortest time among
the depth-reduction techniques to build the k-induction for-
mulas (BIF) and to run the SAT solver (SAT time).

5. CONCLUSION
We have presented an alternate technique for making invari-
ants inductive. The proposed framework is general allowing
the invention of customized solutions. We have implemented
a prototype solution which strengthens the guards of the
transitions based on the the assumption the sequence of the
executed transitions is known. We have reported the bene-
fit and the overhead of using this method to model check
a system that we develop in a parallel project. We re-
mark that the general technique is not restricted to standard
induction-based invariant checking [17] but can possibly be
used to improve the proof-quality of any method using k-
induction. For example, algorithms using fix-point iteration
to prove equivalence of circuits have been augmented with
k-induction to provide stronger completeness [3]. The re-
sulting algorithm can be further improved by using strength-
ened transitions. However, as our technique manipulates the
transitions, it is limited to induction schemes that work on
the unfolding of the state transition relation.

We believe that the usability of strengthened guards heavily
depends on the actual system. Therefore, we plan to apply it
for the verification of other systems as well. In future work,
we would like to elaborate the full automation of strength-
ened guards. The main issues are to automatically obtain
execution plans and to derive strong strengthened guards

6The lemma can be proven by 1-induction; in general, TVAs
are guaranteed to be provable via simple induction [13].
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without user intervention.
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ABSTRACT
In this paper we describe an approach to use formal analy-
sis tools in conjunction with traditional testing to improve
the efficiency of the test generation process. We have de-
veloped a technique for the construction of combinatorial
test suites, featuring expressive constraints over the models
under test and cross coverage evaluation between multiple
coverage criteria: combinatorial, structural and fault based.
Our approach is tightly integrated with formal logic, since it
uses formal logic to specify the system inputs (including the
constraints), test predicates to formalize testing as a logic
problem, and applies the SAL model checker tool to solve
it, and hence to generate combinatorial test suites. Early
results of experimental assessment are presented, supported
by a prototype tool implementation.

1. INTRODUCTION
Verification of highly-configurable software systems, such as
those supporting many optional or customizable features, is
a challenging activity. In fact, due to its intrinsic complexity,
formal specification of the whole system may require a great
effort. Modeling activities may become extremely expensive
and time consuming, and the tester may decide to model
only the inputs and require they are sufficiently covered by
tests. On the other hand, unintended interaction between
optional features can lead to incorrect behaviors which may
not be detected by traditional testing [27, 35]. To this aim,
combinatorial interactive testing (CIT) techniques [12, 20,
27] can be effectively applied in practice [2, 31, 26]. CIT
consists in employing combination strategies to select val-
ues for inputs and combine them to form test cases. The
tests can then be used to check how the interaction among
the inputs influences the behavior of the original system un-
der test. The most used combinatorial testing approach is to
systematically sample the set of inputs such a way that all
t-way combinations of inputs are included. This approach
exhaustively explores t-strength interaction between input
parameters, generally in the smallest possible test execu-
tions.

In particular, pairwise interaction testing aims at generat-
ing a reduced-size test suite which covers all pairs of input
values. Significant time savings can be achieved by imple-
menting this kind of approach, as well as in general with
t-wise interaction testing. As an example, exhaustive test-
ing of a system with a hundred boolean configuration op-
tions would require 2100 test cases, while pairwise coverage
for it can be accomplished with only 10 test cases. Simi-
larly, pairwise coverage of a system with twenty ten-valued
inputs (1020 distinct input assignments possible) requires a
test suite sized less than 200 tests cases only. Also, it has
been experimentally shown that CIT is really effective in
revealing software defects [25]. A test set that covers all
possible pairs of variable values can typically detect 50%
to 75% of the faults in a program [32, 13]. Other experi-
mental work shown that usually 100% of faults are already
triggered by a relatively low degree of features interaction,
typically 4-way to 6-way combinations [27], and that the
testing of all pairwise interactions in a software system finds
a significant percentage of the existing faults [13]. Dunietz
et al. [15] compare t-wise coverage to random input testing
with respect to structural (block) coverage achieved, with
results showing higher reliability of the former in achiev-
ing block coverage if compared to random test suites of the
same size. Burr and Young [6] report 93% code coverage
as a result from applying pairwise testing of a commercial
software system. For this reason combinatorial testing is
used in practice and supported by many tools [29]. How-
ever, as explained in Section 2, most combinatorial testing
techniques either ignore the constraints which the environ-
ment may impose on the inputs or require the user to modify
the original specifications and add extra information to take
into account the constraints. In this paper we investigate
the use of CIT in the presence of constraints, and in par-
ticular with constraints over how input values can change
over time, or briefly, temporal constraints. Our approach is
particularly useful (but not limited to) if one wants to ap-
ply CIT to reactive systems, for which temporal constraints
play a fundamental role.

We argue that a mixed approach, where both testing and
formal analysis (model checking) tools are used in conjunc-
tion, could be of advantage in order to balance the required
efforts over time. Specifically, we devise an approach where
formal modeling of system’s input/output domains and of its
state space (behavior), is not required all at once but can
be done in successive stages, respectively. At start-up stage,
formal modeling of just the input domain allow for exhaus-
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tive exploration of features interactions, using for instance
combinatorial testing. This lets us achieve a high degree of
confidence on the system correctness with relatively little
effort. Meanwhile, or later in time, the same model can be
extended to include the actual system’s behavioral descrip-
tion. At this second stage, temporal properties which ex-
press constraints over sequences of inputs over time can also
be checked. That is, feedback from the model checker can be
used in order to customize the combinatorial test suites, al-
lowing only valid tests, with respect to the requirements on
the dynamics of the system parameters. Thus, still improv-
ing the significance of the resulting test process. Moreover,
the behavioral model of the system can be also used as an
oracle to compute expected outputs to each test, thus en-
abling also fully automated evaluation of the test process. In
this context, we present a technique to express constraints
over the dynamics of a system and to use them to build a
valid combinatorial test suite. This technique has been im-
plemented in a tool (ATGT)1 designed in order to exploit
model checkers to generate tests. Considering models pos-
sibly with their complete behavioral specification, allowed
us to derive a combinatorial test suite and then evaluate
its cross coverage with respect to structural and fault-based
criteria.

The paper is organized as follows: section 2 gives some in-
sight on the topic and recently published related works. Sec-
tion 3 presents our approach, how we deal with propositional
constraints, how we use the SAL model checker to generate
combinatorial tests, and how we evaluate the tests. Section
4 explains how we incorporate temporal constraints over the
input domain. Section 5 evaluates early results on some case
studies carried out in order to assess the correctness of the
proposed approach. Finally, section 6 draws our conclusions
and points out some ideas for future extension of this work.

2. RELATED WORK
Many algorithms and tools for combinatorial interaction test-
ing already exist in the literature. Grindal et al. count more
than 40 papers and 10 strategies in their recent survey [20].
There is also a web site [29] devoted to this subject and
several automatic tools are commercially [8] or freely avail-
able [32]. Most of the currently available methods and tools
are strictly focused on providing an algorithmic solution to
the mathematical problem of covering array generation only,
while very few of them account also for other complemen-
tary features, which are rather important in order to make
these methods really useful in practice in more general sit-
uations, like i.e. the ability to handle constraints on the
input domains. In a previous paper [7] we have identified
the following requirements for a effective combinatorial test-
ing tool, extending the previous work on this topic by Lott
et al. [28]:

A. Ability to deal with user specific requirements on

the test suite. The user may require the explicit exclusion
or inclusion of specific test cases, e.g. those generated by
previous executions of the used tool or by any other means,
in order to customize the resulting test suite. The tool could

1ATGT tool is available for download at:
http://cs.unibg.it/gargantini/projects/atgt.

also let the user interactively guide the on-going test case se-
lection process, step by step. Moreover the user may require
the inclusion or exclusion of sets of test cases which refer
to a particular critical scenario or combination of inputs. In
this case the set is better described symbolically, for example
by a predicate expression over the inputs. Note that instant
[20] strategies, like algebraic constructions of orthogonal ar-
rays and/or covering arrays, and parameter-based, iterative
strategies, like IPO, do not allow this kind of interaction.

B. Integration with other testing techniques. Combi-
natorial testing is just one testing technique. The user may
be interest to integrate results from many testing techniques,
including those requiring very complex formalisms (as in [19,
18, 17, 16]). This shall not be limited to having a common
user-interface for many tools. Instead, it should go in the
direction of generating a unique test-suite which simultane-
ously accounts for multiple kinds of coverages (e.g., com-
binatorial, state, branch, faults, and so on). Our method,
supported by a prototype tool, aims at bridging the gap be-
tween the need to formally prove any specific properties of
a system, relying on a formal model for its description, and
the need to also perform functional testing of its usage con-
figurations, with a more accessible black-box approach based
on efficient combinatorial test design. Integrating the use of
a convenient model checker within a framework for pairwise
interaction testing, our approach gives to the user the easy
of having just one convenient and powerful formal approach
for both uses.

C. Constraints support. A third desired requirement of
a combinatorial testing strategy is the ability to deal with
complex constraints. This issue has been recently investi-
gated by Cohen et al. [9] and recognized as a highly de-
sirable feature of a testing method. Note that the general
problem of finding a minimal set of test cases that satisfies
t-wise coverage can be NP-complete [34, 30]. If constraints
on the input domain are to be taken into account, even the
generation of a single test can be NP-complete, since it can
be reduced in the most general case to a satisfiability prob-
lem.

Although no one has considered constraints over the evo-
lution of monitored variables during the time, there are al-
ready few approaches to deal with the non temporal (or
propositional) constraints over the inputs.

In order to deal with constraints, some methods require to
remodel the original specification. For instance, AETG [8,
28] requires to separate the inputs in a way they become
unconstrained, and only simple constraints of type if then

else (or requires in [9]) can be directly modeled in the
specification. Other methods [21] require to explicitly list all
the forbidden combinations. As the number of input grows,
the explicit list may explode. In [3] the authors introduce
the concept of soft constraints: they use a method to avoid
tuples if possible. In this paper we consider only hard con-
straints: a test is valid only if it satisfies the constraints.
Cohen et al. [9] found that just one tool, PICT [11], was
able to handle full constraints specification, that is, without
requiring remodeling of inputs or explicit expansion of each
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forbidden test cases. However, there is no detail on how the
constraints are actually implemented in PICT, limiting the
reuse of its technique.

Cohen et al. [9] propose a framework to incorporating con-
straints into established greedy and simulating annealing
combinatorial testing algorithm. Their framework is gen-
eral and fully supports the presence of constraints, even if
they can be modeled only as forbidden tuples.

Recently, several papers investigated the use of verification
methods for combinatorial testing. Hnich et al. [24] trans-
lates the problem of building covering arrays to a Boolean
satisfiability problem and then they use a SAT solver to gen-
erate their solution. In their paper, they leave the treatment
of auxiliary constraints over the inputs as future work. Con-
versely, Cohen et al. Kuhn and Okun [25] try to integrate
combinatorial testing with model checking (SMV) to pro-
vide automated specification based testing, with no support
for constraints.

In our previous work [7] we have investigated the integration
of model checkers with combinatorial testing in the presence
of (propositional) constraints while supporting all of the ad-
ditional features listed above. In [7], not only we address
the use of full constraints as suggested in [9] but we feature
the use of predicates to express constraints over the inputs
(see section 3 for details). Furthermore, while Cohen’s gen-
eral constraints representation strategy has to be integrated
with an external tool for combinatorial testing, our approach
tackles every aspect of the test suite generation process.

In this paper we extend and integrate our previous work with
some modifications by considering t-wise coverage, dealing
with temporal constraints over the dynamics of inputs, which
has not yet been investigated, to the best of our knowledge,
and evaluating combinatorial tests against structural and
fault-based test suites (cross coverage evaluation).

3. LOGIC-BASED APPROACH
In this section we present the logic-based approach presented
in [7] with some integrations and extensions, like the n-wise
coverage. The technique is supported by the ASM Test Gen-
eration Tool (ATGT). ATGT was originally developed to
support structural [19] and fault based testing [16] of Ab-
stract State Machines (ASMs), and it has been extended to
support also combinatorial testing.

Since pairwise testing aims at validating each possible pair of
input values for a given system under test, we then formally
express each pair as a corresponding logical expression, a
test predicate (or test goal), e.g.:

p1 = v1 ∧ p2 = v2

where p1 and p2 are two inputs or monitored variables of
enumerative or boolean domain and v1 and v2 are two pos-
sible values of p1 and p2 respectively. Similarly, the n-wise
coverage can be modeled by a set of test predicates, each of
the type:

p1 = v1 ∧ p2 = v2 ∧ · · · ∧ pn = vn

where p1, p2 . . . pn are n inputs and v1, v2 . . . vn are their
values, such that every possible combination of the n input
variables with their values is taken into account. Please note
that to reach complete n-wise coverage this has to be true for
each n-tuple of input parameters of the considered system.

The easiest way to enumerate the test predicates required
for the n-wise coverage of an ASM model is to employ a
combinatorial enumeration algorithm, which simply loops
over the variables and their values to build all the possible
test predicates.

In order to correctly generate the test predicates required
by the coverage we assume the availability of a formal de-
scription of the system under test. This description should
include at least the input parameter domains2. The descrip-
tion has to be entered in the tool as an ASM specification in
the AsmetaL language [33]. We use as case study the well
known example Cruise Control (CC) [1], whose AsmetaL
specification in shown in Listing 1. The CC has 4 boolean
monitored variables, one monitored variable with 3 possible
values, and, for instance, the collection of test predicate for
the pairwise coverage count 48 predicates. These are the
combinatorial explosion of all assignments for each of the
five possible subsets of two distinct parameters of CC. The
the four-wise coverage set for the same example count 112
test predicates. They can be obtained by enumerating all
the possible assignments for the following parameter subsets:

fast igOn brake engRun
fast igOn brake lever
fast igOn engRun lever
fast brake engRun lever
igOn brake engRun lever

Table 1: parameters combinations

This activity (step 1) is carried out by the test predicate
generator of Fig. 1 showing the process proposed by our
method and implemented in ATGT.

By formalizing the n-wise testing by means of logical predi-
cates, finding a test that satisfies a given predicate reduces
to a logical problem of finding a complete 3 model for a log-
ical formula. To this aim, many techniques like constraint
solvers, can be applied. Our approach exploits a well known
model checker tool, namely the bounded and symbolic model
checker tool SAL [14]. Given a test predicate tp, SAL is
asked to verify a trap property [17] which states that tp is
never true, or never(tp), which in LTL, the language of SAL,
becomes G(¬tp). The trap property is not a real system
property, but enforces the generation of a counter exam-
ple, that is a set of assignments falsifying the trap property
and satisfying our test predicate. The counter example will
contain bindings for all monitored inputs, including those
parameters missing (free) in the predicate, thus defining the
test we were looking for.

2Currently, only finite, discrete enumerable domains are
supported.
3We say that a model is complete if it assigns a value to every
input variable. We informally call this model assignment
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Figure 1: the process of test suite generation based on SAL MC

asm cruiseControl
import StandardLibrary
//UNIVERSES and FUNCTIONS
signature:

enum domain CCMode =
{OFF| INACTIVE|CRUISE|OVERRIDE}

enum domain CCLever =
{DEACTIVATE| ACTIVATE|RESUME}

dynamic controlled mode : CCMode
dynamic monitored lever : CCLever
dynamic monitored igOn : Boolean
dynamic monitored engRun : Boolean
dynamic monitored brake : Boolean
dynamic monitored fast : Boolean

definitions:
// AXIOMS: ADDED LATER
// RULES:
main rule r CruiseControl =
if not igOn then mode := OFF
else if not engRun then mode:= INACTIVE
// igOn and engRun
else par

if mode = OFF then mode := INACTIVE endif

if mode = INACTIVE and not brake and not fast
and lever = ACTIVATE then

mode := CRUISE
endif

if mode = CRUISE then

if fast then mode := INACTIVE
else if brake or lever = DEACTIVATE then

mode := OVERRIDE endif endif

endif

if mode = OVERRIDE and not fast and not brake
and (lever = ACTIVATE or lever = RESUME) then

mode := CRUISE
endif endpar

endif endif

default init s1:
// INITIAL STATE: ADDED LATER

Listing 1: AsmetaL specification of Cruise Control

cruiseControl: CONTEXT = BEGIN

CCLever : TYPE = {DEACTIVATE, ACTIVATE, RESUME};

monitored : MODULE = BEGIN

OUTPUT igOn, fast, engRun, brake: BOOLEAN,
lever: CCLever

TRANSITION igOn’ IN {true, false};
fast’ IN {true, false};
engRun’ IN {true, false};
brake’ IN {true, false};
lever’ IN {DEACTIVATE, ACTIVATE, RESUME};

END;

% trap property
tc 92668c : THEOREM monitored |− G(NOT <tp>);

END

Listing 2: SAL specification of Cruise Control

The steps we actually perform to generate a suitable test
suite are depicted in Fig. 1. We randomly extract a test
predicate tp (step 2) from the set of all the test predicates
previously generated. The user may select only a subset of
the test predicates for generation or include some extra tps
(as explained in [7]): we call candidates all the test pred-
icates to be considered. Then (step 3) we build the SAL
specification by considering the inputs of the original model
and the trap property. The SAL translation of CC is shown
in Listing 2.

We run SAL to obtain a counter example, i.e. an assignment
of every input which satisfies tp. Without constraints such
counter example always exists, it represents the test, and it
is called test data (step 4). The test data produced by SAL
is then completed to compute the expected values for the
controlled variables to obtain a real test. Indeed, since the
SAL model ignores the rules and the controlled variables and
it considers only the inputs and their domains, the counter
example does not contain the expected values for the con-
trolled variables. The test is also evaluated to check if it
covers other candidates, i.e. if it satisfies other test predi-
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T = test suite to be optimized
Op = optimized test suite
Tp = set of test predicates which are not covered by tests in Op

0. set Op to the empty set and add to Tp all the test predicates
1. take the test t in T which covers most test predicates in Tp
and add t to Op
2. remove all the test predicates covered by t from Tp
3. if Tp is empty then return Op else goto 1

Figure 2: Test suite reduction algorithm

cates (step 5). Finally the test is added to the test suite and
the test predicates covered are removed from the candidates
until the set becomes empty. This approach, according to
[20], can be classified as iterative, since the test suite is built
one test at the time.

Even if one skips the test predicates already covered, the
final test suite may still contain some test cases which are
redundant. We say that a test case is required if contains
at least a test predicate not already covered by other test
cases in the test suite. We than try to reduce the test suite
by deleting all the test cases which are not required in order
to obtain a final test suite with fewer test cases. Note, how-
ever, that an unnecessary test case may become necessary
after deleting another test case from the test suite, hence we
cannot simply remove all the unnecessary test predicates at
once. We have implemented a greedy algorithm, reported in
Fig. 2, which finds a test suite with the minimum number
of required test cases by simply looking at which test predi-
cates are covered by each test in the original test suite. This
reduction technique is applied in step 6 of the Fig. 1.

3.1 Propositional constraints
Support for constraints over the inputs is given by expressing
them as axioms in the specification. In the CC example, the
assumptions that the engine is running only if the ignition
is on and that the car is driving too fast only if the engine is
running, are modeled in AsmetaL by the following axioms:

axiom inv ignition over engRun : (engRun implies igOn)
axiom inv toofast over fast : (fast implies engRun)

To express constraints we adopt the language of proposi-
tional logic with equality4. Note that most methods and
tools admit only few templates for constraints: the transla-
tion of those templates in equality logic is straightforward.
For example the require constraint is translated to an im-
plication; the not supported to a not, and so on. Even the
method proposed in [9] which adopt a similar approach to
ours prefer to allow constraints only in a form of forbidden
configurations [22], since it relies for the actual tests gener-
ation on external tools. Our approach allows the designer
to state the constraint of a forbidden combination as a not
statement. Moreover, we support constraint that not only
relate two variable values (to exclude a pair), but can contain
generic bindings among variables. Note that any constraint

4To be more precise, we use propositional calculus, boolean
and enumerative types for variables, and equality

models an explicit binding, but their combination may give
rise to complex implicit constraints.

In our approach, the axioms must be satisfied by any test
case we obtain from the specification, i.e. a test case is valid
only if it does not contradict any axiom in the specification.
While others [4] distinguish between forbidden combinations
and combinations to be avoided, we consider only forbidden
combinations, i.e. combinations which do not satisfy the
axioms. Since we allow the specification to contain also con-
trolled variables and rules that assign value to them, error
conditions can be modeled by an error controlled variable,
and rules that detect erroneous conditions and assign suit-
able values to error in order to signal the occurrence of such
conditions. The specification can be used then as oracle to
know whether a combination causes an error in the system.

In the presence of constraints, finding a valid test case be-
comes a challenge similar to finding a counter example for a
theorem or proving it. Verification techniques like SAT algo-
rithms, or model checkers algorithms are particularly effec-
tive in this case, so we investigated the use of the bounded
and symbolic model checkers in SAL to this aim. To in-
clude constraints in SAL they must be translated in order
to embed the axioms directly in the trap property, since SAL
does not support assumptions directly. Simply put, the trap
property must be modified to take into account the axioms
a1, a2, ...an. The general schema for it becomes:

G(a1 ∧ a2 ∧ .. ∧ an) ⇒ G(¬tp) (1)

A counter example of the trap property 1 is still a valid test
data. In fact, if the model checker finds an assignment to
the variables that makes the trap property false, it finds a
case in which both the axioms are true and the implied part
of the trap property is false. This test case covers the test
predicate and satisfies the constraints.

Without constraints, we were sure that a trap property de-
rived from a consistent test predicate had always a counter
example. Now, due to the constraints, the trap property
(1) may not have a counter example, i.e. it could be true
and hence provable by the model checker. We can distin-
guish two cases. The simplest case is when the axioms are
inconsistent, i.e. there is no assignment that can satisfy
all the constraints. In this case each trap property is triv-
ially true since the first part of the implication (1) is always
false. The inconsistency may be not easily discovered by
hand, since the axioms give rise to some implicit constraints,
whose consequences are not immediately detected by human
inspection. For example a constraint may require a 6= x, an-
other b 6= y while another requires a 6= x → b = y; these
constraints are inconsistent since there is no test case that
can satisfy them. Note that also input domains must be
taken into account when checking axioms consistency. In-
consistent axioms must be considered as a fault in the spec-
ification and this must be detected and eliminated. For this
reason when we start the generation of tests, if the specifi-
cations has axioms, we check that the axioms are consistent
by trying to prove:
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G(¬(a1 ∧ a2 ∧ .. ∧ an)) (2)

If this is proved by the model checker, then we warn the user,
who can ignore this warning and proceed to generate tests,
but no test will be generated, since no valid test case can be
found. We assume now that the axioms are consistent. Even
with consistent axioms, some (but not all) trap properties
can be true: there is no test case that can satisfy the test
predicate and the constraints. In this case we define the test
predicate as infeasible.

Definition 1. Let tp a test predicate, M the specification,
and C the conjunction of all the axioms. If the axioms are
consistent and the trap property for tp is true, i.e. M ∧C |=
¬tp, then we say that tp is infeasible. Let tp be the n-wise
test predicate p1 = v1 ∧ p2 = v2 . . . pn = vn, we say that this
combination of assignments is infeasible.

An infeasible combination of assignments represents a set of
invalid test cases: all the test cases which contain this com-
bination are invalid. Our method is able to detect infeasible
assignments, since it can actually prove the trap property
derived from it. The tool finds and marks the infeasible
combinations, and the user may derive from them invalid
tests to test the fault tolerance of the system. For exam-
ple, the following test predicate results infeasible for the CC
example, since the engine cannot run when the ignition is
off:

engRun = true AND igOn = false −−−> unfeasible

Note that since the BMC is in general not able to prove a
theorem, but only to find counter examples, it would be not
suitable to prove infeasibility of test predicates. However,
since we know that if the counter example exists then it has
length (i.e. the number of system states) equal to 1, if the
BMC does not find it then we can infer that the test predi-
cate is infeasible. Note that a test specifies the exact value
of all the input variables, while a test predicate specifies a
generic scenario. ATGT allows the tester to load an exter-
nal file containing user defined tests and test goals. When
an external file is loaded, ATGT adds the user defined test
in the set of test predicates to be covered. Then it adds the
user defined tests and it checks which test predicates are
satisfied by these tests. In this way the tester can decide to
skip the test predicates covered by tests he/she has written
ad hoc.

4. TEMPORAL CONSTRAINTS
Until now, we have considered only constraints which bind
the input values at the same time, e.g. a variable cannot
have a value if another has another value. Now we consider
systems which evolve during their operations in a discrete
way, step by step. At every step every variable can have
a different value from the value it had before. In particu-
lar, the monitored variables are free to non deterministically
change from one step to the next one. However, some axioms
may limit how inputs evolves due some external constraints
of the environment. For these systems, a test is no longer a

Figure 3: the lever of a Cruise Control

simple assignment to every input variable to one of its possi-
ble values, but it becomes a sequence of assignments, where
every assignment denotes a state. In this case we refer to a
test as test sequence. We consider in this paper three kinds
of temporal constraints: initial value, next value, and one
input assumption (OIA). These three kinds of constraints
are the typical types of assumptions most formal notation
for reactive systems permit about the models under test.
The OIA is useful to model asynchronous systems, which
process an input event at the time.

Initial and next value. The first two constraints state
how a single input can evolve during the normal operation
of the system. Consider for example the lever for a cruise
control system depicted in Fig. 3. The lever is initially in
the DEACTIVATE position and from that position it can
only become ACTIVATE. From the ACTIVATE position it
may become RESUME or DEACTIVATE again.

If the tester wants to use the test generated by our method
to test the actual system for conformance with the require-
ments, he/she must use the actual interface to enter the
input values of the test cases. For example, if a test case re-
quires that lever = RESUME, the user must start with lever
= DEACTIVATE, than lever = ACTIVATE and finally lever
= RESUME. The application of one test case has required
three steps, but the testing method considered so far is not
aware of this and it cannot take advantage: if another test
requires the user to switch lever = ACTIVATE, the tester
must go back to the initial state and start again the appli-
cation of the new test case, although this kind of combina-
tion of inputs has already been tested. To consider this kind
of constraints we extend our method as follows. First, the
tester will add the constraints in the specification. Initial
values are set by the following initialization in the AsmetaL
specification.

default init s1:
function mode = OFF
function lever = DEACTIVATE
function igOn = false
function engRun= false
function brake = false
function fast = false

The next value constraint can be specified by using the spe-
cial library function next. For example, for CC a constraint
is:

axiom lever deact : lever = DEACTIVATE implies
next(lever = DEACTIVATE) or next(lever = ACTIVATE)

While the initial values are translated into SAL by the INI-
TIALIZATION clause, the next value constraints are trans-
lated in SAL in Linear Temporal Logic (LTL)5. The trap
5The SAL model checkers use LTL (Linear Temporal Logic)
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property 1 will contain in a1 . . . an not only the proposi-
tional axioms, but also the temporal axioms. For example,
to express the constraint when the lever is in the DEACTI-
VATE position, the trap property will contain the following
axiom:

G( ... AND lever = DEACTIVATE =>

(X(lever = DEACTIVATE) OR X(lever = ACTIVATE))) ....

One Input Assumption. The One Input Assumption con-
straint, taken form [23], allows at most one monitored vari-
able to change from one state to the next. The expression in
AsmetaL of such constraint in terms of next values is very
complex and it can be error prone. We decided to allow
the user to simply set this constraint as a preference of the
generation method. The translation in SAL differs from the
next constraints too: instead adding a complex axiom, we
modify the TRANSITION clause in the SAL specification as
follows, thus allowing only one input to change at the time:

TRANSITION

[ true −−> igOn’ IN {true, false};
[] true −−> fast’ IN {true, false};

...
]

In the presence of temporal constraints, the counter example
produced by SAL will contain several states. We extend the
definition of test: a test data sequence is a sequence of
assignments, whose first assignment is compatible with the
initial value constraint and every pair of consecutive assign-
ments is compatible with the temporal constraints.

We have now to take the whole counter example produced
by the model checker as a test sequence: a test case is now a
test data sequence with a possible number of states greater
than 1. Furthermore, adding this kind of constraints lim-
its (but it does not exclude) the use of the Bounded Model
Checker (and any other constraint solver or SAT based tech-
nique). Indeed the BMC is no longer able to prove that a
test predicate is infeasible, since not finding a counter exam-
ple of a given finite length does not necessarily imply that
the trap property is true: it can be the case that the counter
example is longer than the BMC depth. We are investigating
the use of induction and a conservative use of the bound for
counter examples to be able to induce infeasibility from the
non existence of a counter example by using BMC. Mean-
while, if the BMC does not find a counter example for a test
predicate, we do not mark that test predicate as unfeasible,
we warn the user, and we invite to run the SMC.

5. EXPERIMENTS
We have applied our technique to two case studies: the
Cruise Control (CC) , the Safety Injection System (SIS),
a simplified version of the system described in [10]. Table
2 reports some significant data about them. The input size
is the product of the input domain sizes. The notation nm

means that the specification contains m variables each with
n possible values. The table reports the number of controlled

as their assertion language but they also accept CTL syntax
on the common fragment

input # # # #tp n-wise
size C R axs 2 3 4 5

CC 24
· 3 1 6 5 48 104 112 48

unfeasible 3 19 38 24

SIS 22
· 3 3 4 4 16 12 - -

Table 2: Case Studies

variables (# C), the number of rules (# R), the number
of axioms (#axs: propositional and temporal constraints,
which include for SIS the OIA), and the number of the test
predicates obtained from the n-wise combinatorial coverage.
For CC some test predicates were proved unfeasible.

The first goal of our experiments has been the validation of
our technique by generating the test suites for the combina-
torial testing of the two case studies. We have used the two
different model checkers SAL provides: the symbolic model
checker (smc) and the bounded model checker (bmc). We
wanted also to study the effects of the constraints over the
test suites. We have modified the original specifications in
order to obtain two versions: one with the constraints (de-
noted by +) and one without (temporal and propositional)
constraints (denoted by -). Table 3 reports the total time
required to generate the test suite (A) for each n-wise cov-
ering test suite, the total number of tests in the suite, the
total number of states (as sum of the number of states in all
the test sequences - #sts) before and after the reduction al-
gorithm is applied (if the reduction has actually reduced the
size of the test suite). The column (B) shows also the aver-
age time taken for every test in the test suite and it is equal
to (A)/#tests. Note that the number of tests and the num-
ber of states are equal for specifications without constraints
since each test has only one state.

Observing the data in Table 3 we can make the following
preliminary observations. The BMC proved to be faster
than the SMC, especially in the presence of constraints. The
total time to generate the test suite (column A) is always
lower for the BMC than for the SMC, while the average time
taken per every single generated test (column B) is always
lower for the BMC in the presence of constraints, while it is
comparable without constraints. The number of tests and
the total length is again lower for the BMC than for the
SMC (without constraints the sizes are comparable again).
This suggests that the BMC is more suitable to deal with
constraints than the SMC: it is faster and produces smaller
test suites. This is particularly true in case of short tests
as in our case studies. However, the average length of the
tests (not reported in Table) produced by the SMC is lower:
since the counter example produced by the SMC is as short
as possible, the SMC produces very short tests, which cover
only few test predicates. This, on the other hand, causes
the SMC to run more times than the BMC and the start-up
time for SMC is longer than the BMC since it must build the
complete BDD representation of the problem. SMC works
better when one needs very short tests while the number of
tests is not so important. The reduction technique reduced
the test suite only in a few cases (column after red.).

The constraints caused the number of tests to decrease, but
the total number of states to increase. We never found a test
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(A) no red. after red. (B)
mc time # # # # time

n-wise secs tests sts tests sts x test

CC + (with constraints)

pair smc 10.4 6 27 5 22 1.73
bmc 5.2 4 27 - - 1.3

3 smc 30.9 14 58 13 53 2.21
bmc 6.3 5 46 4 39 1.26

4 smc 50.2 19 77 - - 2.64
bmc 10.5 8 72 - - 1.31

5 smc 45.2 21 83 20 81 2.15
bmc 10.4 8 81 - - 1.3

CC - (without constraints)

pair smc 18.8 21 21 - - 0.9
bmc 18.9 21 21 - - 0.9

3 smc 34.8 37 37 - - 0.94
bmc 33.7 37 37 - - 0.91

4 smc 41.9 46 46 - - 0.91
bmc 41.9 46 46 - - 0.91

5 smc 44.5 48 48 - - 0.93
bmc 45.3 48 48 - - 0.94

SIS + (with constraints)

pair smc 5.5 6 29 - - 0.92
bmc 2.5 3 19 - - 0.83

3 smc 4.4 5 28 - - 0.88
bmc 3.3 4 33 - - 0.83

SIS - (without constraints)

pair smc 4.8 10 10 - - 0.48
bmc 5.5 10 10 - - 0.55

3 smc 6.0 12 12 - - 0.5
bmc 6.2 12 12 - - 0.52

Table 3: Test suite with and without constraints

suite complaint with the constraints able to cover all the test
predicates in a total number of states equal to the number
of states of the test suite without constraints. Although
considering the temporal constraints notably increases the
total length of the test suite, we believe that it augments
the usability and applicability of the test suite, as observed
in Sect. 4.

5.1 Cross coverage evaluation
We have compared the coverage obtained by the combinato-
rial n-wise testing with the coverage obtained by the struc-
tural criteria presented in [18] and the fault based criteria
presented in [16]. The results for the CC and SIS examples
are reported in Tables 4 and 5, where BR is the basic rule
coverage (similar to the branch coverage), CR is the com-
plete rule coverage, UR is the update rule coverage, MCDC
is the modified condition decision coverage, ASF is the as-
sociative shift fault, ENF is the expression negation fault,
LNF is the literal negation fault, ORF is the (logical) op-
erator reference fault, ST0 is stuck at false, ST1 is stuck at
true, and ROF is the relational operator fault.

Table 4 shows the number of (feasible) test predicates for all
the structural and fault based coverage criteria (row #tp)
and the number of these test predicates covered by each n-
wise combinatorial test suite.

The table shows that the pairwise coverage implied a very
low coverage of structural and fault based criteria for the CC
example. Small improvements were obtained by increasing n
of the the n-wise coverage. However, combinatorial testing
was not even able to cover all the rules (BR), although the
number of combinatorial test predicates is much higher than
the number of test predicates for BR. We have investigated
and found that the rules contain guards like the following
one (see Listing 1):

if mode = INACTIVE and not brake and
not fast and lever = ACTIVATE then ...

which requires to be covered a particular value of the con-
trolled variable mode and a particular combination of inputs.
The desired input combination is covered in at least a test
in the test suite, but since combinatorial testing ignores the
outputs, such combination may not activate that particu-
lar rule because the controlled variable has a different value
from that desired. By ignoring the controlled variables, com-
binatorial testing may be not able to drive the system to a
critical state where a controlled variable takes a particular
value. These results prove that the combinatorial testing
does not always imply good structural coverage, contrary to
the experiments presented in [6, 15], where, however, the
structural coverage was computed against the implementa-
tions and not against the specifications as in our approach.
Our experiments would confirm the results presented in [5],
where the interaction test suites provided little benefit over
the randomly generated tests and did not improve coverage
of the requirements-based tests. On the contrary, we ob-
tained that the combinatorial coverage implies a very high
structural and fault based coverage for the SIS, as reported
again in Table 4. We observed that the rules in SIS were not
so dependent on controlled variables as those in CC, and this
is the reason why we obtained better structural coverage for
SIS than for CC. These results raise concerns on the appli-
cation of combinatorial testing in the model-based domain
for embedded and reactive systems, where the information
about the system state is needed to build test suites achiev-
ing good structural coverage. However, the combinatorial
testing may be the only model-based testing technique ap-
plicable in case the model contains only the specification of
the inputs together with their domains and constraints.

On the other hand, structural and fault based criteria do
not imply combinatorial testing either, as reported in Table
5, which shows the number of combinatorial test predicates
covered by structural and fault based testing. For this reason
we believe that combinatorial, structural and fault based
criteria are complementary each other.

6. CONCLUSION AND FUTURE WORK
In this paper we have described an integrated approach to
use formal analysis in conjunction with traditional testing in
order to improve the efficiency of the verification&validation
process. We presented an approach which is tightly inte-
grated with formal logic, since it uses a formal notation to
specify the system under test, test predicates to formalize
combinatorial testing as a logic problem, and applies a model
checker to solve it. We developed and presented a technique
for the construction of n-wise combinatorial test suites, fea-
turing not just simple constraints over the set of inputs but
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Structural Coverage Fault Based

BR CR UR MCDC ASF ENF LNF MLF ORF ST0 ST1 ROF
CC #tp 7 7 9 0 22 29 28 22 49 49 29

pairwise 3 4 5 19 11 9 19 10 28 5
3-wise 3 3 5 19 12 10 19 10 29 5
4-wise 3 3 5 19 13 11 19 10 30 6
5-wise 4 4 6 19 15 11 19 20 31 6

SIS #tp 7 2 11 7 1 9 16 16 9 24 24 16
pairwise 7 2 9 7 1 9 16 15 9 24 21 15
3-wise 7 2 10 7 1 9 16 16 9 24 24 15

Table 4: Cross coverage of n-wise combinatorial testing

Structural Coverage Fault Based

#tp BR CR UR MCDC ASF ENF LNF MLF ORF ST0 ST1 ROF
CC pairwise 45 26 - 26 26 14 31 40 40 40 40 40

3-wise 85 34 - 34 34 16 48 64 64 64 64 64
4-wise 74 21 - 21 21 9 32 47 47 47 47 47
5-wise 24 5 - 5 5 2 7 13 13 13 13 13

SIS pairwise 16 9 5 10 9 6 3 9 10 10 10 10 10
3-wise 12 4 2 5 4 2 1 4 5 5 5 5 5

Table 5: Combinatorial test predicates covered by structural and fault based testing

also over the evolution of inputs, which is the major and orig-
inal contribution. Moreover, we were able to evaluate the
cross coverage between combinatorial, structural and fault
based coverage criteria, with very limited effort. Early re-
sults of experimental assessment have also been presented,
supported by a prototype tool implementation. We found
some interesting and unexpected results, since in one case
combinatorial testing did not imply structural testing, in
spite of different results in the literature suggest the con-
trary. We believe the whole proposed approach can be very
successful since it still allows the tester/developer to inter-
face to an easy black-box test tool - where only combinatorial
testing can be used - and, at the same time, advantage of
the (available) formal specification in order to implement a
more effective test process - where structural and fault based
testing can be applied.

Since our approach is based on the use of model checkers,
it suffers from the state explosion problem. However, for
the combinatorial testing, we consider only the inputs to-
gether with their constraints and this should keep the prob-
lem tractable. Other approaches may take advantage of a
limited expressiveness of the constraints language, but with
a loss of usability. We plan to investigate the combined use
of the model checker for the constrained part of the model
with classical algorithms for combinatorial testing for the
unconstrained part to minimize the total complexity of the
method.
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ABSTRACT
Mechanical and full verification of behavior of object-based
programs is a central software engineering problem. Any
successful solution to the problem should strike a delicate
compromise between amenability to automation and several
software engineering factors, such as the form and ease of
specifications, demands on software developers to provide
invariants and hints, development and use of relevant math-
ematical theories, and language and software design. The
object of this paper is to illustrate the issues that need to
be addressed for full behavioral verification through our ex-
periments towards push-button verification of an imperative
object-based code in a modular fashion. In the process, the
case study indirectly characterizes the requirements of a lan-
guage for developing verifiable software.

1. INTRODUCTION
Automated verification of component-based software is a

difficult and challenging problem, and it needs to be tackled
for the verification grand challenge [8, 21] to succeed. The
present paper illustrates the issues in automating verifica-
tion using object-based sorting as a case study.

This case study differs from previous efforts in automated
verification of properties in that the focus is on full behav-
ioral verification. The verification approach used here is
clean [10], because it uses both a language and specifica-
tions that do not involve modeling references or aliasing.
It also differs from the work on automated verification of
sorting algorithms (e.g. [1] ) in several respects. The verifi-
cation approach is modular; it is based only on the specifica-
tion of components that are reused and allows verification of
one component at a time. The sorting specification and the
verified code are both generic. The proof of correctness is
total. Finally, the mathematical notions come from a user-
defined library illustrating an open system for verification of
non-trivial software. Overall, a key contribution of the case
study is in indirectly characterizing the requirements of an
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personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

an integrated language for mathematical specification and
implementation as a first step towards automating verifica-
tion.

By design, the chosen example software is simple and is
in the same spirit as the set of benchmarks for automatic
verification that we have proposed in a recent paper [19].
However, while the example is simple, the issues raised by
this code must be dealt with by any verification approach.
Even with a simple example, our attempt to achieve push-
button verification of the software quickly ran into several
difficulties, demonstrating a variety of issues that need to
be addressed for automated verification to become practi-
cal. The case study is a “real” example in the sense that it
was chosen for verification from the collection of components
available at the OSU RSRG software components library [2].
Furthermore, the code used in the case study predates the
present verification effort. Though the component had been
engineered with an eye toward verification, automating this
task has proved challenging.

The first of the challenges in our case study, likely typi-
cal of other such efforts, concerns human errors in writing
assertions. That humans will have to write mathematical
assertions, such as to specify the behavior of software they
intend to verify, is an inescapable requirement of any at-
tempt to produce correct software [18]. There was a subtle
error in the specification from the use of an output value of a
variable instead of its input value in an assertion. Even after
that error was fixed, one of the sub-problems in establishing
an automated proof had to do with a weak invariant for a
loop; while valid and apparently adequate, the invariant was
not sufficiently strong to complete the proof. What is note-
worthy here is that these errors existed in a piece of software
that has been studied (and used) by ourselves, other instruc-
tors, and literally thousands of students. This observation
also underscores why“social proofs” [14] are necessarily sub-
ject to errors implying that complete automation, the focus
of this workshop, is absolutely essential.

The second set of challenges concern difficulties in achiev-
ing automation. Our proof process is based on [7] and the
verification conditions (VC) resulting from our VC genera-
tor are fed to the Isabelle proof assistant [15]. Even after
human errors in writing specification and invariants were
eliminated, automation using the Isabelle proof assistant as
the back-end prover remained elusive. The problem was
traced to insufficient theory development and the inability
to instantiate a universal quantifier suitably without any hu-
man help. Our attempt to tackle these challenges has led to
a novel way of using suitable definitions and theory devel-
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opment to minimize and avoid, if possible, the explicit need
for universal quantifiers. It is too early to tell whether the
proposed approach will generalize or whether it would sim-
ply raise problems elsewhere that are not apparent in our
current setting.

It is important that we note that our choice of Isabelle,
which is not a totally automated prover, is motivated by
several factors. While dedicated first-order theorem provers
might be able to automate more given the right axioms and
background facts, we need a higher order prover. Isabelle
also allows us to call external theorem provers (e.g. [17, 20]).
Furthermore, we want our verification to be performed us-
ing verified theories; Isabelle has one of the largest libraries
of proven mathematical theorems. This is especially impor-
tant in full verification where behaviors of objects may be
specified using sophisticated mathematical models. The sec-
ond factor is that Isabelle has support for both automated
and user-guided proof methods. This is especially useful
to experimental researchers, because that support helps us
find where a proof of a VC gets stuck, find a correct proof,
and use that information to modify the automated proof
methods (thereby increasing the types of VCs that are prov-
able automatically). Finally, we note that we know of no
provers that can automatically discharge the VCs from our
case study.

In attempting to solve the subproblems during automa-
tion, we also generalized our mathematical definitions and
software specifications in ways that we hadn’t initially con-
ceived. The resulting software is clearly more reusable. This
last point may indicate that software designed for auto-
mated verification might be, in general, better engineered
than other software and that automation has benefits, not
just for correctness, but also for the overall quality of soft-
ware.

The methods and tools used for the subject of this paper
have been set up such that they can be repeated elsewhere
with other scenarios and case studies. We include only par-
tial code and proofs in this paper. Complete details may be
found at: www.cs.clemson.edu/~resolve/benchmarks.

2. CASE STUDY IN DETAIL

Begin Str ing Theory

Definition St r ing ( Str (G : Set ) : Set ,
empty str ing : Str (G) ,
ext ( a : Str (G) , x : G) : B =

. . .

Inductive Definition on b : Str (G : Set )
of ( a : Str (G) ) o ( b : Str (G) ) i s

. . .

Lemma Concatenat ionAssoc ia t ive
a o ( b o c ) = ( a o b ) o c

Definition IsPermutation where
IsPermutation a b = . . .

Lemma PermutationCommutative
IsPermutation ( x o y ) ( y o x )

. . .
End Str ing Theory

Figure 1: Example of String Theory

A specification and implementation of a sort operation
that extends a Queue abstract data type is given below in the
RESOLVE [16, 4, 3, 11] notation. Here, queues are concep-
tualized mathematically as strings of entries, constrained to
be within a given Max Length. The specification of the sort
operation is parameterized both by the type of the entries
the sorted queue contains and by the ordering relation used
for sorting. A sample of the theory is given in Figure 1. The
proofs of the lemmas and theorems in the theory are given
in a separate proof module which is not shown.

Operation Sort Q has no preconditions. It ensures that
the Queue parameter Q after the operation must be non-
decreasing (with respect to the client supplied LEQV rela-
tion) and must be a permutation of the incoming Q (denoted
by #Q).

In the figure, the local definition IsNondecreasing is based
on the the caller-supplied LEQV relation. It uses “o” to de-
note string concatenation. The definition of IsPermutation is
in String Theory a mathematical unit imported by the speci-
fication Queue Template neither of which is shown.

Enhancement Sor t Capab i l i t y ( de f
LEQV(x , y : Entry ) : B)

for Queue Template ;
requires I s To ta l P r eo rd e r i ng (LEQV) ;

Definition I sNondecreas ing ( a : Str ( Entry ) ) : B=
( for a l l b , c : Str ( Entry ) ,

for a l l x , y : Entry ,
i f a = b o <x> o <y> o c

then LEQV(x , y ) ) ;

Operation Sort Q (updates Q: Queue ) ;
ensures I sNondecreas ing (Q)

and IsPermutation(#Q,Q) ;
end Sor t Capab i l i t y ;

2.1 Experimentation Part 1: Human Errors
The lessons learned in the first phase of this case study are

likely typical of any such effort. They involved human errors
in writing specifications and loop invariants. The implemen-
tation of the sort operation chosen for this verification exper-
iment is a selection sort. The Sort Q code (procedure) uses a
local operation Remove Min, only the specification of which is
given. Its code also makes use of a programming operation
to compare two entries; the operation has the behavior of
the relation LEQV used in the specification. To use the sort-
ing capability, a client would have to supply a compatible
mathematical relation and an operation for ordering.

The procedure (code) for sorting defines and uses a local
operation Remove Min to find and remove a minimum element
of a queue according to the ordering as shown in in Figure 2.
The loop in the Sort Q procedure is annotated by a software
engineer with a list of variables that are modified by the
loop, an invariant (expressed as a maintaining assertion),
and a progress metric (decreasing expression) to establish
total correctness.

Following the loop, :=: denotes the swap operator which
can be used to exchange the values of two objects cleanly,
without introducing aliasing [6].

We used our VC generator to generate verification condi-
tions that represent the correctness of both the Remove Min

and Sort Q procedures and attempted to prove them using Is-
abelle. The generated verification conditions correspond to
the postcondition of the operation that is verified, precondi-
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Definition I sASmal lest ( a : Str ( Entry ) ;
x : Entry ) : B=

( for a l l b , c : Str ( Entry ) ,
for a l l y : Entry ,

i f a = b o <y> o c then LEQV(x , y ) ) ;

Operation Remove Min (updates Q: Queue ;
replaces min : Entry ) ;

requires |Q| /= 0 ;
ensures IsPermutation (Q o <min>, #Q)

and I sASmal lest (Q, min ) ;
−− code omitted

Procedure Sort Q (updates Q: Queue ) ;
Var so r t ed : Queue ;
Var min : Entry ;
While ( Length (Q) /= 0)
changing Q, sorted , min ;
maintaining IsPermutation (Q o sorted , #Q)

and I sNondecreas ing ( so r t ed ) ;
decreasing |Q | ;

do

Remove Min (Q, min ) ;
Enqueue (min , so r t ed ) ;

end ;
Q := : so r t ed ;

end Sort Q ;

Figure 2: Original Sort Q Implementation

tions of operations that are called, and the correctness of the
programmer-supplied loop invariant and progress metric.

Some of the verification conditions could not be proved.
One them was the VC that represents the postcondition of
Remove Min. This VC could not be proved because of an in-
correct specification of Remove Min, which should have been:

ensures . . . and I sASmal lest(#Q, min ) ;

Once the specification error was fixed, there was still a prob-
lem in proving the Sort Q procedure. This was quickly traced
to the loop invariant being too weak. While the two con-
juncts in the loop invariant seem to match up properly with
the two conjuncts in the postcondition of Sort Q, the invari-
ant IsNondecreasing(sorted) itself could not be established after
min was enqueued. In particular, the invariant that every el-
ement in sorted is related to every element in Q was missing.
This information is captured in the corrected code as shown
in Figure 3.

2.2 Experimentation Part 2: Automation Dif-
ficulties

Once we corrected the annotations and generated new ver-
ification conditions, it was easy to check manually that each
VC could be proved. In automating the proof with Isabelle,
though a majority of the VCs could be proved, proofs of
some VCs required human assistance.

The use of Isabelle as a tool to prove the VCs automat-
ically requires the use of needed theories and lemmas from
the RESOLVE mathematical theory library. Our approach
is to write each RESOLVE mathematical theory (in this
instance, string theory) as a new Isabelle theory, complete
with defined functions and needed algebraic lemmas and the-
orems. We also leverage the already developed List theory
in Isabelle for the internal representation of Strings (accord-
ing to the recommended practice for Isabelle [15]); however,
all VCs are proved with lemmas from String theory. Since
we are focused on the ease and provability of VCs, in the
present paper, we do not discuss the proofs of the lemmas

Operation Remove Min (updates Q: Queue ;
replaces min : Entry ) ;

requires |Q| /= 0 ;
ensures IsPermutation (Q o <min>, #Q)

and I sASmal lest(#Q, min ) ;
−− code omitted

Procedure Sort Q (updates Q: Queue ) ;
Var so r t ed : Queue ;
Var min : Entry ;
While ( Length (Q) /= 0)
changing Q, sorted , min ;
maintaining IsPermutation (Q o sorted , #Q)

and I sNondecreas ing ( so r t ed )
and

( for a l l y : Entry ,
i f I sSubs t r i ng (<y> , Q) then

I sNondecreas ing ( so r t ed o <y >)) ;
decreasing |Q | ;
do

Remove Min (Q, min ) ;
Enqueue (min , so r t ed ) ;

end ;
Q := : so r t ed ;

end Sort Q ;

Figure 3: Corrected Sort Q Implementation

themselves.
Once the basic theory is imported into Isabelle, lemmas

about strings must be identified and tagged. The tags indi-
cate to Isabelle how the lemma should be used in an auto-
matic proof. Isabelle can use lemmas as simplification rules,
introduction rules, destruction rules, and elimination rules.
The simplification rules rewrite a term as another term. The
introduction rules replace a goal of a lemma to be proved
with the assumptions of an already proved lemma. The de-
struction rules replace a set of assumptions in a lemma to
be proved with the goal of an already proved lemma. Essen-
tially, how the lemmas are tagged determines how Isabelle
will attempt to prove a VC automatically.

The VCs in this case are provable automatically, once the
appropriate lemmas are tagged for use in the proofs, except
for two cases discussed in some detail here. The first case
is the proof of the loop invariant at the end of the while
loop in the Remove Min procedure as shown in Fig. 4. Here,
the main issue is the development of the lemmas and theo-
rems for the IsPermutation predicate. Once the IsPermutation

predicate is expanded and the quantifiers instantiated ap-
propriately, Isabelle can then prove the VC. A more well
developed theory, with lemmas that allow for more powerful
manipulations of the commutativity of concatenation within
IsPermutation would help mitigate this issue.

The second case is shown in Figure 5. This lemma is the
VC resulting from the obligation to prove the loop invari-
ant at the end of the while loop in the Sort Q procedure.
In Figure 5, we use lemma ND4; the lemma is displayed in
Figure 6. Lemma ND4 allows us to look at only the last
entry in a string to determine whether adding another ele-
ment would preserve the IsNondecreasing property. The main
problem with this lemma is that Isabelle cannot find the
proof automatically without being told that ND4 should be
used and that is should be used in a particular manner, as
an introduction rule. Without the knowledge that the usage
of the lemma ND4 is always good, Isabelle stops exploring
before a successful proof can be found. Once a person adds
a manual declaration to apply the correct lemma (as shown
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lemma 4 :
”[ |
( min int <= 0);
(0 < max int ) ;
(Max Length > 0) ;
i s i n i t i a l min ;
( l ength Q <= Max Length ) ;
l ength Q ˜= 0;
Q = (<min2> o Q3 ) ;
IsPermutation ( ( temp1 o Q2) o <min1>) Q;
IsASmal lest ( temp1 o <min1>) min1 ;
( l ength Q2 ˜= 0) ;
Q2 = (<x1> o Q1 ) ;
x1 <= min1

| ]
==>

IsPermutation ( ( ( temp1 o <min1>)
o Q1) o <x1 >) Q ”

apply auto
apply ( unfo ld I sPermutat ion de f )
apply ( auto )
apply ( d ru l e t a c x=x in spec )
apply auto
done

Figure 4: First Case of Problem VCs

by the “apply (rule ND4)” command in Figure 5), Isabelle’s
reasoner can find the proof.

lemma 1 0 :
”[ |
( min int <= 0);
(0 < max int ) ;
(Max Length > 0) ;
( l ength Q <= Max Length ) ;
( IsPermutation (Q2 o sor ted1 ) Q) ;
( I sNondecreas ing sor ted1 ) ;
ALL y . I s SubSt r ing <y> Q2

−−> (I sNondecreas ing ( sor ted1 o <y >)) ;
( l ength Q2 ˜= 0) ;
( IsPermutation (Q1 o <min1>) Q2 ) ;
( I sASmal lest Q2 min1 )

| ]
==>

ALL y . I s SubSt r ing <y> Q1 −−>

( I sNondecreas ing ( ( sor ted1 o <min1>) o <y>))”
apply auto
apply ( r u l e ND4)
apply auto
done

Figure 5: Second Case of Problem VCs

The two issues raised in this subsection seem to be crit-
ical to the verification problem; namely the theory is not
well developed enough (relative to the capabilities of the
tool used) to permit the proof of VCs or the theory is well
developed enough but the tool cannot construct the proof
without hints such as the lemmas necessary or even when
each lemma should be applied in a proof.

2.3 Experimentation Part 3: Impact of The-
ory Development on Automation

One of the difficulties in automation had to do with uni-
versal instantiation. Though this problem has received at-
tention, our next line of thinking was to avoid creating this
problem in the first place for automated provers. Our solu-
tion approach is to eliminate universal quantification in our
annotations through new definitions, whenever possible. For
our case study, this approach has led to a new definition, as
well as development of new theorems involving the new defi-
nition. If we are successful in automating this totally, then it

lemma ND4:
”
[ |
I sNondecreas ing ( a o <y>);
y <= b
| ]
==>

I sNondecreas ing ( ( a o <y>) o <b>)
”

Figure 6: Lemma ND4

would also suggest a more general attempt to eliminate uni-
versal quantification through suitable mathematical theory
development. Our verification system already allows for the
use of ghost variables and manipulation of ghost variables
to eliminate existential quantifiers in assertions (following
King’s principles [9] for the idea). This finding led us to the
specification of Remove Min operation and the invariant for
the Sort Q procedure as shown in Figures 7 and 8.

Definition I sPreced ing . . .

Operation Remove Min (updates Q: Queue ;
replaces min : Entry ) ;

requires |Q| /= 0 ;
ensures IsPermutation (Q o <min>, #Q)

and I sPreced ing (<min>, #Q) ;
−− code omitted

Procedure Sort Q (updates Q: Queue ) ;
Var so r t ed : Queue ;
Var min : Entry ;
While ( Length (Q) /= 0)
changing Q, sorted , min ;
maintaining IsPermutation (Q o sorted , #Q)

and I sNondecreas ing ( so r t ed )
and I sPreced ing (<min> , Q) ;

decreasing |Q | ;
do

Remove Min (Q, min ) ;
Enqueue (min , so r t ed ) ;

end ;
Q := : so r t ed ;

end Sort Q ;

Figure 7: Modified Theory Development for Specification

The new predicates are created and additional lemmas
are proved that show how to the new predicates relate to
others. The goal for this theory development is to even-
tually create enough new functions/predicates and relevant
facts about those functions/predicates to remove the uni-
versal quantifiers from the specifications as we gain more
experience with the proofs of the VCs. We envision large
theory developments that are created a priori to be used in
the specifications of programmatic procedures. These the-
ory developments would be mostly fixed, e.g. most pro-
gramming specifications would fall within such theories. Of
course, when new theory development is needed, the newly
created theories/functions/predicates would be added to the
theory repository.

In this example, notice that the definitions of
IsNondecreasing and IsPreceding are not usable elsewhere be-
cause they are specialized based on the user-supplied rela-
tion for ordering LEQV. A consequence of this deficiency
is that any theorems that are proved for these definitions
will also be specialized. Since the underlying principles
are more general, it has led us to the following more gen-
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Enhancement Sor t Capab i l i t y ( de f LEQV(x , y : Entry ) : B)
for Queue Template ;

requires I s To ta l P r eo rd e r i ng (LEQV) ;

Operation Sort Q (updates Q: Queue ) ;
ensures Is Conformal w (LEQV, Q)

and IsPermutation(#Q,Q) ;
end Sor t Capab i l i t y ;

Figure 8: Modified Specification for Sort Q Procedure

eral (and simple) specification of sorting. The predicate
Is Conformal w takes an arbitrary binary relation and a string;
it is a more general version of IsNondecreasing. The predicate
Universally Relates to takes an arbitrary binary relation and
two strings. It is a more general version of IsPreceding.

Begin Str ing Theory

. . .

Lemma PermutationCommutative
IsPermutation ( x o y ) ( y o x )

. . .

Definition Is Conformal w (R: ( x : G, y : G) : B,
a : Str (G) ) : B

= for a l l x , y .
I f I s Sub s t r i n g (<x> o <y> , a )
Then R(x , y )

. . .

Definition Un i v e r s a l l y Re l a t e s t o (
R : ( x : G, y : G) :B,
a : Str (G) ,
b : Str (G) ) i : B

= for a l l x , y . I f I s Sub s t r i n g (<x> , a )
and I s Sub s t r i n g (<y> , b )

Then R(x , y )

. . .

. . .
End Str ing Theory

Figure 9: Definitions of Is Conformal w and Univer-
sally Relates to

The definitions of these predicates are shown in Figure 9.
Given the theory development for these general definitions,
we do not foresee any additional automation problems due
to the generalization.

3. DISCUSSION
An excellent summary of several verification efforts may

be found in [12], and details of efforts more directly related
to the present paper may be found in [7]. Here, we present
only a summary of most related efforts for full, automated
verification of programs.

To our knowledge there is no system available today for
automated and modular verification of full behavior of object-
based programs. Using the πVC Verification System [1],
Bradley, Manna, and Sipma have verified several sorting al-
gorithms (of integer arrays) written in the pi programming
language. A few examples of the sorting algorithms proved
in πVC are: insertion sort, merge sort, bubble sort, and
quick sort for integer arrays in the pi programming lan-
guage. The verification of the various sorting algorithms
that they implemented each required less than 20 seconds

to complete. Unlike our work, their focus is on using spe-
cialized data types and decision procedures.

The Why software verification system [5] can be used to
generate verification conditions, similar to the ones gener-
ated by our tool. Unlike our effort, the Why tool focuses
primarily on functional programs annotated with assertions
and typically relies on built-in types (ie, arrays).

Verisoft [13] is a verification system that relies on Isabelle
to perform the actual proofs, as we have done. It is based
on a “clean” subset of the C programming language, C0 and
it aims for full verification. Since it is focused on C, it does
not address modular verification of programs using objects.

4. CONCLUSION
We have presented our experiences with the verification

of a sorting algorithm implementation using the proof assis-
tant Isabelle. The lessons learned from this exercise include
information about the types of errors programmers are likely
to make in writing the annotated code, and some of the pos-
sible trouble areas for a proof assistant such as Isabelle. We
plan to continue this work in order to address the identified
issues with Isabelle. At least as importantly, we have also
learned how automation can lead to better software engi-
neering and sophisticated theory development along dimen-
sions that would not have come into focus without attempt-
ing automated verification in the first place. Finally, the case
study illustrates at least a set of minimum requirements for
an integrated language for developing verified software.
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