
Extended Interface Grammars for
Automated Stub Generation

Graham Hughes Tevfik Bultan
Department of Computer Science

University of California, Santa Barbara

Outline
• Motivation
• Interface Grammars
• Shape Types
• Interface Grammars + Shape Types
• Experiments
• Conclusions

Motivation

Cool
Verification
Technique

A Software
System

Motivating Examples
• Cool verification technique: Action Language Verifier

– An infinite state model checker for specifications with
unbounded integers, boolean and enumerated variables

• Application: Check synchronization in Java programs

• Does not really work
– ALV cannot handle Java semantics (objects, recursion

etc.)
– ALV would not scale to the state space of a typical Java

program

Read-Write Lock in Action Language
module main()

 integer nr;
 boolean busy;
 restrict: nr>=0;
 initial: nr=0 and !busy;

 module ReaderWriter()
 enumerated state {idle, reading, writing};
 initial: state=idle;

 r_enter: state=idle and !busy and nr’=nr+1 and state’=reading;

 r_exit: state=reading and nr’=nr-1 and state’=idle;

 w_enter: state=idle and !busy and nr=0 busy’ and state’=writing;

 w_exit: state=writing and !busy’ and state’=idle;

 ReaderWriter: r_enter | r_exit | w_enter | w_exit;
 endmodule

 main: ReaderWriter() | ReaderWriter() | ReaderWriter();

 spec: invariant(busy => nr=0)
 spec: invariant(busy => eventually(!busy))

endmodule

Read-Write Lock in Java
class ReadWriteLock {

 private Object lockObj;
 private int totalReadLocksGiven;
 private boolean writeLockIssued;
 private int threadsWaitingForWriteLock;
 public ReadWriteLock() {
 lockObj = new Object();
 writeLockIssued = false;
 }
 public void getReadLock() {
 synchronized (lockObj) {
 while ((writeLockIssued) || (threadsWaitingForWriteLock != 0)) {
 try {
 lockObj.wait();
 } catch (InterruptedException e) {
 }
 }
 totalReadLocksGiven++;
 }
 }
 public void getWriteLock() {
 synchronized (lockObj) {
 threadsWaitingForWriteLock++;

 while ((totalReadLocksGiven != 0) || (writeLockIssued)) {
 try {
 lockObj.wait();
 } catch (InterruptedException e) {
 //
 }
 }
 threadsWaitingForWriteLock--;
 writeLockIssued = true;
 }
 }
 public void done() {
 synchronized (lockObj) {

 //check for errors
 if ((totalReadLocksGiven == 0) && (!writeLockIssued)) {
 System.out.println(" Error: Invalid call to release the lock");
 return;
 }
 if (writeLockIssued)
 writeLockIssued = false;
 else
 totalReadLocksGiven--;

 lockObj.notifyAll();
 }

 }

}

Motivating Examples
• Cool Verification Technique: Java Path Finder

– An explicit state model checker (like Spin) for Java
programs

• Application: Check assertions in Java programs

• Does not really work
– JPF cannot handle native code
– JPF does not scale to large Java programs

Verifiability Via Modularity
• Modularity is key to scalability of any verification or

testing technique
– Moreover, it can help isolating the behavior you wish

to focus on, removing the parts that are beyond the
scope of your verification technique

• Modularity is also a key concept for successful software
design
– The question is finding effective ways of exploiting the

modularity in software during verification

Interfaces for Modularity
• How do we do modular verification?

– Divide the software to a set of modules
– Check each module in isolation

• How do we isolate a module during verification/testing?
– Provide stubs representing other modules

• How do we get the stubs representing other modules?
– Write interfaces

• Interfaces specify the behavior of a module from the
viewpoint of other modules

• Generate stubs from the interfaces

Interface Grammars

Program

Component

In
te

rfa
ce

G

ra
m

m
ar

Interface
Compiler

Component
Stub

Program

Model
Checker

In
te

rfa
ce

G

ra
m

m
ar

SStarttart →→ BaseBase
BaseBase →→ beginbegin TailTail BaseBase

 || εε
TailTail →→ commitcommit

 || rollbackrollback

An Example
• An interface grammar for transactions

– Specifies the appropriate ordering for method calls to a
transaction manager

– Method calls are the terminal symbols of the interface
grammar

 An Example
• Consider the call sequence
begin rollback begin commit

• Here is a derivation:
Start ⇒ Base ⇒ begin Tail Base
⇒begin rollback Base
⇒begin rollback begin Tail Base
⇒begin rollback begin commit Base
⇒begin rollback begin commit

SStarttart →→ BaseBase
BaseBase →→ beginbegin TailTail BaseBase

 || εε
TailTail →→ commitcommit

 || rollbackrollback

Another Example
• The earlier example we gave can also be specified as a

FSM
• However, the following grammar which specifies nested

transactions cannot be specified as a FSM

StartStart →→ BaseBase
BaseBase →→ beginbegin BaseBase TailTail BaseBase

 || εε
TailTail →→ commitcommit

 || rollbackrollback

Yet Another Example
• Let’s add another method called setsetrollbackonlyrollbackonly

which forces all the pending transactions to finish withwhich forces all the pending transactions to finish with
rollbackrollback instead of instead of commitcommit

•• We achieve thisWe achieve this by extending the interface grammars withby extending the interface grammars with
semantic predicates and semantic actionssemantic predicates and semantic actions

StartStart →→ «r:=false; l:=0»«r:=false; l:=0» BaseBase
BaseBase →→ beginbegin «l:=l+1»«l:=l+1» BaseBase TailTail
 «l:=l-1; if «l:=l-1; if l=0 l=0 then r:=false»then r:=false» BaseBase

 || setsetrollbackonlyrollbackonly «r:=true»«r:=true» BaseBase
 || εε

TailTail →→ ««r=falser=false»» commitcommit
 || rollbackrollback

Our Interface Grammar Language
rule base {rule base {

choose {choose {
case ?begin: {case ?begin: {

«l++;»«l++;»
return begin;return begin;
apply base;apply base;
apply tail;apply tail;
««l--l--; if (; if (l==0l==0)) r=falser=false;»;»
apply base;apply base;

 case ?setRollbackOnly:case ?setRollbackOnly:
««r=truer=true;»;»
return setRollbackOnly;return setRollbackOnly;
apply base;apply base;

......
}}

}}
......

Verification with Interface Grammars
In

te
rfa

ce

G
ra

m
m

ar
Interface
Compiler

Program

Model
Checker

Top-down
parser

parse
table

semantic
predicates

and
semantic
actions

pa
rs

er
 s

ta
ck

C
om

po
ne

nt
 S

tu
b

method invocation
(lookahead)

Checking Arguments
• A crucial part of the interface specification is specifying the

allowable values for the method arguments and generating
allowable return values

• In what I discussed so far all these are done in the
semantic actions and semantic predicates

• The question is can we specify the constraints about the
arguments and return values using the grammar rules
– Recursive data structures are especially good

candidates for this!

Shape Types
• Shape types [Fradet, Metayer, POPL 97] provide a

formalism for specifying recursive data structures

• It is a specification formalism based on graph grammars

• Shape types can be used to specify the connections
among the heap allocated objects

• Objects become the parameters of the nonterminals
and the constraints on the connections among the objects
are specified on the right-hand-sides of the grammar rules
(similar to semantic predicates)

Shape Type for Doubly Linked List

1 2
next

prev

p

3
next

prev
4

next

prev

nextprev

DoublyDoubly →→ pp x, x, prevprev x x nullnull,, L xL x
L xL x →→ next next x y,x y, prev prev y x,y x, L yL y
L xL x →→ next next xx nullnull

Doubly ⇒ pp 11, , prevprev 11 nullnull,, LL 11
⇒⇒ nextnext 1 21 2,, prev prev 2 12 1,, LL 22
⇒⇒ nextnext 2 32 3,, prev prev 3 23 2,, LL 33
⇒⇒ nextnext 3 43 4,, prev prev 4 34 3,, LL 44
⇒⇒ nextnext 44 nullnull

Shape Type for Binary Tree

1 rightleft

p

2 3

5

rightleftleft

right

right

left
4 rightleft

BintreeBintree →→ pp x, B x x, B x
B xB x →→ left left x y,x y, rightright x z,x z, B y, BB y, B zz
B xB x →→ left left x x nullnull,, right right x x nullnull

Extension to Interface Grammars
• In order to support shape types we extend the interface

grammars as follows:
– We allow nonterminals with parameters

• This extension is sufficient since the constraints about the
connections among the objects can be stated using
semantics predicates and semantic actions

Interface Grammars + Shape Types

DoublyDoubly →→ pp x, x, prevprev x x nullnull,, L xL x
L xL x →→ next next x y,x y, prev prev y x,y x, L yL y
L xL x →→ next next xx nullnull

rulerule genDoublygenDoubly(Node x) {(Node x) {
«x = new Node(); «x = new Node(); x.x.setPrevsetPrev(null);»(null);»
apply apply genLgenL(x);(x);

}}
rule rule genLgenL(Node x) {(Node x) {

choose {choose {
case:case:

Node y Node y = «new Node();»= «new Node();»
«x.«x.setNextsetNext(y); (y); y.y.setPrevsetPrev(x);»(x);»
apply apply genLgenL(y);(y);

 case:case:
«x.«x.setNextsetNext(null);»(null);»

}}

Objection Generation vs. Validation
• The use of shape types in interface grammars has two

purposes
– For the objects that are passed as method arguments

we need to check that their shape is allowed by the
shape type

• We call this object validation
– For the objects that are returned by the component we

need to generate an object that is allowed by the shape
type

• We call this object generation

Object Generation vs. Validation
• Object generation and validation tasks are broadly

symmetric
– The set of nonterminals and productions used for object

generation and validation are the same and are dictated
by the shape type specification

– In object generation semantic actions are used to set
the fields of objects to appropriate values dictated by the
shape type specification

– In object validation these are constraints are checked
using semantic predicates specified as guards

Object Generation vs. Validation
• There is a minor problem with object validation
• In shape type specifications, the assumption is that there is

no aliasing among the objects unless it is explicitly
specified

• This assumption is easy to enforce during object
generation since every new statement creates a new
object that has nothing else pointing to it

• In order to enforce the same constraint during object
validation we need to make sure that there is no
unspecified aliasing
– This can be enforced by using a hash-set for storing and

propagating all the observed objects

Experiments
• We wrote an interface grammar for the EJB 3.0

Persistence API
– This is an API specification for mapping Java object

graphs to a relational database
– Hibernate is an implementation of this API

• Used several Hibernate test cases to evaluate
performance and correctness

• Several test cases are designed to fail, and test
exceptional behavior by violating the specification

• Accordingly we can verify the fidelity of our stub as well as
verify the test cases themselves

Test case Interface verification Client verification Err?

bidir 2 s 15 MB 2 s 16 MB no

mergeAndBidir 2 s 15 MB 2 s 16 MB no

callbacks 2 s 15 MB 2 s 15 MB no

exception 2 s 15 MB 2 s 15 MB yes

clear 2 s 15 MB 2 s 15 MB no

contains 3 s 26 MB 2 s 15 MB yes

isOpen 2 s 15 MB 2 s 15 MB no

persistNone 2 s 15 MB 2 s 15 MB no

entityNotFound 2 s 15 MB 2 s 15 MB yes

alwaysTransactional 2 s 15 MB 2 s 15 MB yes

wrongId 2 s 15 MB 2 s 15 MB yes

find 2 s 15 MB 2 s 15 MB no

Verification Results

Discussion
• No test can run under JPF without an environment
• Verification is quite efficient

– This is because the test clients are pretty small
– The important thing is that we are able to reduce the

state space by replacing the EJB code with our stub
• Relative to a hand written environment we do not seem to

pay a speed or memory penalty
• Time taken to develop the interface was dominated by the

need to understand EJB Persistence first; about a couple
of hours

Account
Entry

amount
Transaction

∑(entry.amount) = 0

1 * 2 ..* 1
0 ..*

sub-account

0 .. 1

More Experiments
• We extended the interface specification to represent a

recursive data structure for accounts and transactions
• Accounts can have sub-accunts and, hence, are organized

in a tree structure
• We specified this tree structure in an interface grammar

based on shape types and conducted experiments for
verification of client code

Four Clients
• We wrote 4 clients:

– Client 1: Correct client, does not create any new data

– Client 2: Correct client, creates new data

– Client 3: Sometimes incorrect client

– Client 4: Always incorrect client

• We increased the state space by increasing the number of
accounts and entries and checked the verification
performance

Experiments

101270:14360:185015:37363:38

81270:14360:17412:55360:49

61270:14360:20390:38340:21

41270:13360:16370:23260:14

21270:14270:10270:17260:11

Ent.Acc.MBsecMBsecMBsecMBsec

Client 1 Client 2 Client 3 Client 4

Experiments

43270:193914:034334:183719:09

42270:13380:56412:35351:09

41270:13360:16370:23260:14

Ent.Acc.M
B

secMBsecMBsecMBsec
Client 1 Client 2 Client 3 Client 4

Conclusions
• Modular verificaiton is a necessity
• Interfaces are crucial for modular verification
• Interface grammars provide a new specification

mechanism for interfaces
• We showed that interface grammars can be used for

automated stub generation leading to modular verification

Related Work: Interfaces
• L. de Alfaro and T. A. Henzinger. Interface automata.
• O. Tkachuk, M. B. Dwyer, and C. Pasareanu. Automated

environment generation for software model checking.
• A. Betin-Can and T. Bultan. Verifiable concurrent

programming using concurrency controllers.
• T. Ball and S. K. Rajamani. SLAM interface specification

language.
• G. T. Leavens et al.: JML

Related: Grammar-based Testing
• A. G. Duncan, J. S. Hurchinson: Using attributed grammars

to test designs and implementations
• P. M. Maurer: Generating test data with enhanced context

free grammars
• P. M. Maurer: The design and implementation of a

grammar-based data generator
• E. G. Sirer and B. N. Bershad: Using production grammars

in software testing

THE END

