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Overview

The goal of this tutorial is to survey the PVS prover

functionality and empower you to customize it and add to it.

We will briefly survey

• The PVS language (as it applies to proofs).

• The built-in proof capabilities.

• The packages and libraries

• Recent extensions

• Programming style and available functionality
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PVS Language: Types

• Basic types: bool, number ( real, rational, int, nat)

• Uninterpreted types: elem

• Predicate subtypes: {x : nat | x < N}

• Tuples:
(nat, bool, elem),

(x: nat, y :nat | y < x)

• Records: [# size: nat, elems : [below(size) -> T] #]

• Functions: [index: nat -> below(index)]

• Recursive datatypes: list[T] with cons, car, cdr, and

null)
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PVS Language: Terms

• Variables: x

• Constants: +, cons

• Tuples: (1, +, 3), t‘2

• Records: (# size:= 5, weight := 150 #), r‘size

• Application: sort(A, <)

• Binders: (LAMBDA (x: below(5)): 2*x + y),

(FORALL (x: list[nat]): rev(rev(x)) = x)

• Datatypes: cons(2, null), l‘cdr
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Theories

intlist : THEORY

BEGIN

intlist: TYPE = list[int]

A, B, C: VAR intlist

x, y, z: VAR int

sum(A) : RECURSIVE int =

(CASES A OF

null: 0,

cons(x, B): x + sum(B)

ENDCASES)

MEASURE length(A)

RECURSIVE JUDGEMENT sum(A: list[nat]) HAS_TYPE nat

bar: LEMMA sum(append(A, B)) = sum(A) + sum(B)

END intlist
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Proofs

bar :

|-------

{1} FORALL (A, B: intlist): sum(append(A, B)) = sum(A) + sum(B)

Rule? (induct-and-simplify "A")

append rewrites append(null, B!1)

to B!1

sum rewrites sum(null)

to 0

append rewrites append(cons(cons1_var!1, cons2_var!1), B!1)

to cons(cons1_var!1, append(cons2_var!1, B!1))

sum rewrites sum(cons(cons1_var!1, append(cons2_var!1, B!1)))

to sum(append(cons2_var!1, B!1)) + cons1_var!1

sum rewrites sum(cons(cons1_var!1, cons2_var!1))

to sum(cons2_var!1) + cons1_var!1

By induction on A, and by repeatedly rewriting and simplifying,

Q.E.D.
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Lisp Representation

At Rule? prompt, type (lisp (break)) to get a break-point.

*ps* contains the current proofstate with slots

current-goal, context, declaration, . . .

(show (current-goal *ps*)) reveals the contents of the

current goal slot: s-forms, . . . .

(s-forms (current-goal *ps*)) contains the list of sequent

formulas, each with slot formula.

E.g., (formula (car (s-forms (current-goal *ps*)))) is the

first such formula.

A formula is just an expression ( expr) with slots

free-variables and type.
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Expressions

• name-expr

• number-expr - number

• record-expr - assignments

• tuple-expr - exprs

• cases-expr - expression, selections, else-part

• application - operator, arguments

• binding-expr - bindings, type-value, expression

• update-expr - expression, assignments
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Types

• enumtype - elements

• type-name

• subtype - supertype, predicate

• funtype - domain, range

• tupletype - types

• recordtype - fields
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Some Useful Functions

• (pc-parse string nt): Nonterminal can, for example,

be ’expr or ’type-expr

• (pc-typecheck expr :expected type): Typechecks

parsed expr relative to typechecked type. Global

variable *generate-tccs* can be nil, top, all or none.

• (gensubst expr fn test): Top-down traversal to test

and apply fn to subexpressions of expr.

• (mapobject fn expr): Applies fn in a bottom-up

manner to the expr.

• (translate-cases-to-if expr): Translates a cases-expr

to if-then-else form.

• (find-supertype subtype): Finds the maximal

supertype of a subtype.
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Ground Evaluation

[[2]]γ 2

[[x]]γ γ(x)

[[(a, b, c)]]γ (vector [[a]]γ [[b]]γ [[c]]γ)

[[(# l := a, r := b #)]]γ (vector [[a]]γ [[b]]γ)

[[t‘1]]γ (svref t 0)

[[r‘l]]γ (svref r 0)

[[(LAMBDA (x, y, z) : e)]]γ (lambda (n)(let (x′ (svref 0 n)...) [[e]]γ
′
))

[[a = b]]γ (equalp [[a]]γ [[b]]γ)

[[f(a)]]γ (mk-funcall [[f ]]γ [[a]]γ)
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Translating Assignments

Assignments have nondestructive as well as destructive

translations.

Given A WITH [(i) := v] in evaluation context C[] update

analysis checks if the mutable references in the valuation for

A are live in v or C.

Singly threaded code is quite efficient, but deeper analysis

and optimization needed.
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Other Extensionns

Cesar Muñoz has implemented an interface and proof

strategies for using evaluation in PVS proofs as well as

standalone usage.

Ben di Vito and Cesar have implemented the Manip

package for fine-grained algebraic interaction.

Myla Archer has implemented the TAME package for

Timed I/O automata.

Cesar has implemented the Field package.

The LOOP package from Bart Jacobs’ group at Nijmegen

uses PVS for Java/JML verification.
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Yices Translation (Prototype)

Unlike the Shostak procedures which are used online, Yices

is used only as an endgame prover.

The PVS-to-Yices translation is similar to the ground

evaluator.

Since Yices has bool, real, int, nat, predicate subtypes,

dependent tuple, record, and function types, and recursive

datatypes, the translation of types is almost direct.

Yices has multiary functions whereas the translation maps

to unary functions on domains that could be tuple types.

Interpreted operations include boolean, arithmetic, array,

and bitvector operations.

The resulting strategies are yices, yices-with-rewrites, and

ygrind.

14



'

&

$

%

Demos
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Future Work

PVS needs a lot of extension and improvement:

• The ground evaluator can be expanded to handle more

features of PVS and other target languages, and made

considerably more efficient.

• The rewriter can be made vastly more efficient.

• Yices can be used as the online decision procedure.

• Expansive proof generation is now feasible.

• The SAL model checking tools can be integrated with

PVS.

• Library development is critical.
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Conclusions

Both the PVS language and prover support open

frameworks for building customized deduction environments

while integrating a variety of back-end inference tools.

A good understanding of the underlying syntax of PVS

expressions is important for writing front-end strategies as

well as back-end mappings.

We look forward to working with the PVS community on

developing PVS as a unified framework for formalization,

proof, experimentation, and code generation.
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