\_

Recent PVS Language Developments

Sam Owre
owre@csl.sri.com
URL: http://www.csl.sri.com/ owre/

Computer Science Laboratory
SRI International
Menlo Park, CA

August 21, 2006

/

Sam Owre

AFMO6 tutorial:

1



/_ Recent PVS Language Developments'ﬂ

e Introduction to PVS

e What's new? - summary
e (Cotuples

e [ype Extensions

e Structural Subtypes

e Recursive Judgements

e T heory Interpretations

\_ /

Sam Owre AFMO6 tutorial: 2




-

\_

Introduction to PVS' \

PVS is a comprehensive verification system with an
expressive language, powerful theorem prover,
Emacs-based user interface, and many other
components

The language is based on higher-order type theory, with
support for functions, tuples, records, cotuples,
predicate subtypes, dependent types, and inductive
data types.

Typechecking is undecidable, and leads to proof
obligations, called Type correctness conditions (T CCs)

/

Sam Owre

AFMO6 tutorial:

3



/ PVS Theories ' \

e Specifications consist of a collection of theories, each
of which primarily consists of types, constants, and
formulas

e [ heories may be parameterized with types or constants
(or theories)

e [ heories may import other theories, providing instances
for the parameters

e [ heories may include an ASSUMING section, imposing
constraints on its parameters

\_ /

Sam Owre AFMO6 tutorial: 4




Declarations '
/Declarations of PVS include: \

e types - defined or uninterpreted, empty or nonempty

e constants and (logical) variables

e definitions - recursive definitions need a measure
e formulas - axioms, assumptions, lemmas, etc.

e inductive and coinductive definitions

e judgements - provide typing judgements to the
typechecker and prover

e conversions - provide automatic conversions
e auto-rewrites - used to initialize proofs

e |libraries - associates names with external directories

\0 macros - expanded during typechecking /

Sam Owre AFMO6 tutorial: 5



Example Theory'
/listhinseq[T: TYPE] : THEORY \

BEGIN
1: VAR 1list[T]
fs: VAR finseql[T]
n: VAR nat
list2finseq(l): finseq[T] =
(# length := length(1l),
seq := (LAMBDA (x: below[length(1)]): nth(l, x)) #)

finseq2list_rec(fs, (n: nat | n <= length(fs))): RECURSIVE 1list[T] =
IF n=20
THEN null
ELSE cons(fs‘seq(length(fs) - n), finseq2list_rec(fs, n-1))
ENDIF
MEASURE n

finseq2list(fs): 1list[T] = finseq2list_rec(fs, length(fs))
CONVERSION list2finseq, finseqg2list

\\\;?ND list2finseq 4///

Sam Owre AFMO6 tutorial: 6




\_

PVS Tool '

Emacs user interface, but can be run stand-alone

~

Proof trees and theory hierarchies may be displayed
Extensive set of prelude theories

Large number of libraries, including analysis, graph
theory, finite sets

Primarily implemented in Common Lisp

Recently ported to CMU Common Lisp - started SBCL
port

Soon will be open source (GPL)

/

Sam Owre

AFMO6 tutorial:

7



What'’'s New? - Summary'
/ e Covered In this talk: \

o Cotuples

o Type Extensions

o Structural Subtypes

o Recursive Judgements

o Theory Interpretations

e Not covered:
o Random Testing
o Yices integration
o Coinductive definitions
o Codatatypes
o PVSio

\ o Translation to CLEAN /

Sam Owre AFMO6 tutorial: 8




Cotuples '

/ e Cotuples (also known as sums or coproducts) create a
disjoint union of types:

[int + bool + [int -> bool]]

e This is roughly equivalent to the (non-recursive)
datatype

co: DATATYPE
BEGIN
in_1(out_1: int): in7_1
in_2(out_2: bool): in7_2
in_3(out_3: [int -> booll): in7_3
END co

but without the need to name the type, and without
generating extra baggage (axioms, induction schemas,

\ etc.) /

Sam Owre AFMO6 tutorial: 9




-

\_

Cotuple Expressions '

e Cotuples have injections IN_:, predicates IN?_z, and
extractions 0UT_:

e Given

cT: TYPE = [int + bool + [int -> int]]

e IN 2(true) creates a cT element, and CASES is used to
select, e.g., from c: cT:

CASES c OF
IN_1(i): i + 1,
IN_2(b): IF b THEN 1 ELSE O ENDIF,
IN_3(f): £(0)

ENDCASES

~

/

Sam Owre

AFMO6 tutorial: 10



\_

Cotuple Typechecking '

Expressions such as IN_1(3) cannot be typechecked
inside out

Two extensions made to handle this:

o The typechecker now allows (internal) cotuple type
variables - must be instantiated from the context

o The grammar allows the type to be specified
directly: IN_1[cT](3)

The latter is needed for situations where the context
cannot determine the type: IN_.1(3) = IN_1(4)

These extensions were also applied to tuple projections,
e.g., the type of PROJ_1 may be determined from
context, or given explicitly as PROJ_1[[int, int, booll]]

Sam Owre

AFMO6 tutorial:

~

/

11



Type Extensions '

o [ype extensions make it easy to extend a record or
tuple type by adding more components:

location: TYPE = [# x, y, z: real #]

vehicle: TYPE = [# c: Class, weight: real,
pilot: person #]

located_vehicle: TYPE = location WITH vehicle

e Fields may be shared, as long as the types are the
same:

[# x: int, y: above(x) #] WITH [# x: int, z: upfrom(x) #]

e Dependencies must stay local:

[# x, y: int #] WITH [# z: subrange(x, y)) #]

this is not allowed

\ e Similarly for tuple types - the types simply append /

Sam Owre AFMOQO6 tutorial: 12



Structural Subtypes '

/Structura/ subtypes provide partial support for

be modeled

genpoints[gpoint: TYPE <: [# x, y: real #]]: THEORY
BEGIN
move(p: gpoint) (dx, dy: real): gpoint =
p WITH [‘x := p‘x + dx, ‘y := p‘y + dy]
END genpoints

colored_points: THEORY
BEGIN
Color: TYPE = {red, green, blue}
colored_point: TYPE = [# x, y: real, color: Color #]
IMPORTING genpoints[colored_point]
X, y: real
p: VAR colored_point
moveO: LEMMA move(p) (0, 0) =p
same_color: LEMMA move(p) (x, y) ‘color = p‘color

\\\\¥ END colored_points

object-oriented specifications by allowing class hierarchies to

~

/

Sam Owre AFMO6 tutorial: 13



-

\_

Structural and Predicate Subtypes'

Structural and predicate subtypes are distinct:

unit_disk: THEORY
BEGIN

point: TYPE = [# x, y: real #]

unit_disk: TYPE = {p : point | p‘x * p‘x + p‘y * p‘y < 1}
IMPORTING genpoints[unit_disk]

END unit_disk

Now move (p) (2,0) is no longer in the unit disk.

/

Sam Owre

AFMOQO6 tutorial: 14



Structural and Predicate Subtypes'

It is possible to use both:

genpoints[gpoint: TYPE <: [# x, y: real #],
spoint: TYPE FROM gpoint]: THEORY
BEGIN
move (p: spoint) (dx, dy: real): spoint =
LET newp = p WITH [‘x := p‘x + dx, ‘y := p‘y + dy]
IN IF spoint_pred(newp) THEN newp ELSE p ENDIF
END genpoints

\_ /

Sam Owre AFMOQO6 tutorial: 15




\_

Recursive Judgements '

Recursive judgements are judgements that apply to \
recursive functions

As judgements, they work exactly the same as the
corresponding non-recursive judgements

The advantage is that the T CCs generated follow the
structure of the recursive definition, and thus are
generally easier to prove

In effect, the T CCs include the base case(s) and the
inductive step(s) separately

The (slight) disadvantage is that it is no longer obvious
which T CCs are associated with the judgement

This supports the specification style in which all proofs
are pushed into TCCs, and are made as automatic as

possible /

Sam Owre

AFMO6 tutorial:

16



/ Recursive Judgement Example' \

append_int (11, 12: list[int]): RECURSIVE list[int] =
CASES 11 OF
null: 12,
cons(x, y): cons(x, append_int(y, 12))
ENDCASES
MEASURE length(11)

append_nat: JUDGEMENT append_int(a, b: list[nat]) HAS_TYPE list[nat]

This vyields the TCC

append_nat: OBLIGATION
FORALL (a, b: list[nat]):
every[int] ({i: int | i >= 0}) (append_int(a, b));

Which is difficult to prove automatically (or manually)

Sam Owre AFMO6 tutorial: 17



/ Recursive Judgement Example' \

Adding the RECURSIVE keyword:

append_nat: RECURSIVE JUDGEMENT
append_int(a, b: list[nat]) HAS_TYPE list[nat]

We get the TCC

append_nat_TCC1l: OBLIGATION
FORALL (a, b: list[nat], x: int, y: list[int]):
every({i: int | i >= 0})(append_int(a, b)) AND a = cons(x, y) IMPLIE
every[int] ({i: int | i >= 0}) (cons[int] (x, append_int(y, b)));

Ul

Which is easily discharged with grind

\_ /

Sam Owre AFMO6 tutorial: 18




/ Theory Interpretations ' \

e [ heory interpretations allow a given source theory to
be viewed as another target theory, for example,
viewing the integers as a group over addition.

e A theory interpretation gives values to uninterpreted
types and constants of the source in terms of the target

e Axioms of the source are interpreted as T CCs that
must be proved for soundness

e All other formulas are interpreted, and considered to be
proved if their parent formula is (proofchain analysis)

\_ /

Sam Owre AFMOQO6 tutorial: 19




-

\_

Uses of T heory Interpretations'

Theory Interpretations are used for:

consistency - checking that the axioms are not
inconsistent

refinement - providing an “implementation” of a
theory

debugging - checking that the intended model(s) are
instances of the general theory

~

/

Sam Owre

AFMO6 tutorial: 20



Theory Interpretation Example'

th[T: TYPE, x: T]: THEORY
BEGIN
S: TYPE

y: S

END
thi: THEORY
BEGIN

IMPORTING [nat, O0J{{S := bool, y := truel}}

END thi

\_ /

Sam Owre AFMO6 tutorial: 21




Theory Interpretations and Parameters'

—

BEGIN

END t1

\_

e [ heory interpretations are an extension of theory
parameters

e [ he following are essentially equivalent:

t1[S,T:TYPE, x:S, y:T]:THEORY

t2[S:TYPE,x:S] : THEORY
BEGIN

T: TYPE

y: T

END t2

)

t3: THEORY
BEGIN
S,T: TYPE
X: S
y: T

END t3

/

Sam Owre

AFMOQO6 tutorial: 22



Theory Parameters vs Mappings'

Though logically equivalent, there are differences:

Typechecking - instances can often be automatically
derived, especially for types.

Refinement - in mapping to code, uninterpreted types and
constants eventually need to be mapped, unlike
parameters.

\_ /

Sam Owre AFMO6 tutorial: 23




T heories as Parameters'

In addition to type and constants, theories may takes other
theories as parameters

gr[grp: THEORY group]: THEORY

BEGIN

x, y: VAR G

unique_id: LEMMA (FORALL x: x + -x =y AND -x + x =y) =>y =0
END gr

Theory declarations may be also declared in-line (as with
types and constants):

gr: THEORY
BEGIN

grp: THEORY group

x, y: VAR G

unique_id: LEMMA (FORALL x: x + -=x =y AND -x + x = y) =>y =0
END gr

\_ /

Sam Owre AFMOQO6 tutorial: 24




-

\_

Theory Copies '

Theory declarations must create theory copies of the
specified theories

group_homomorphism[Gl, G2: THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y) = £(x) + £(y)
% fooey: LEMMA G1.0 = G2.0

hom_exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

/

Sam Owre

AFMO6 tutorial: 25



\_

Theory Copies Issues'

As the theory copies must be “stand-alone”, this
generally means that there must not be any
declarations preceding the theory declaration
(IMPORTINGS are OK)

Otherwise there will either be circular references, or
ambiguity.

In the future, we plan to allow references to partial
theories (theories up to a declaration), which will then
allow more freedom in theory declaration placement

Theory copies differ according to whether the
interpreted symbols are substituted away, become
definitions, or are simple renamings

/

Sam Owre

AFMOQO6 tutorial: 26



-

\_

Theory Copies Example'

® group: THEORY
BEGIN

G: TYPE+

+: [G, G -> G]
O: G

-: [G -> G]

X, ¥y, z: VAR G

associative_ax: AXIOM FORALL x, y, z: x + (y + z) = (x +y) + z

identity_ax: AXIOM FORALL x: x + 0 = x
inverse_ax: AXIOM FORALL x: x + -x = 0
idempotent_is_identity: LEMMA x + x = x => x =0

END group

® group_mappings: THEORY

BEGIN

Gl1: THEORY = group{{G := int, + :=+, 0 := 0, - := -}}

G2: THEORY = group{{G = int, + =+, 0 = 0, - = -}}

G3: THEORY = group{{G ::=g, + ::= %, 0 ::=1, - ::= inv}}

END group_mappings

Sam Owre

AFMO6 tutorial:

27



/ Theory Interpretations Summary' \

e [ hereis more to theory interpretations:
o Theory views
o Naming conventions
o Nested theories
e See the Theory Interpretations document at

http://pvs.csl.sri.com/docuimentation and the release
notes for more information

e Very likely to be new theory interpretation features as
we gain experience

\_ /

Sam Owre AFMO6 tutorial: 28




