
'

&

$

%

Recent PVS Language Developments

Sam Owre

owre@csl.sri.com

URL: http://www.csl.sri.com/~owre/

Computer Science Laboratory

SRI International

Menlo Park, CA

August 21, 2006

Sam Owre AFM06 tutorial: 1



'

&

$

%

Recent PVS Language Developments

• Introduction to PVS

• What’s new? - summary

• Cotuples

• Type Extensions

• Structural Subtypes

• Recursive Judgements

• Theory Interpretations

Sam Owre AFM06 tutorial: 2



'

&

$

%

Introduction to PVS

• PVS is a comprehensive verification system with an

expressive language, powerful theorem prover,

Emacs-based user interface, and many other

components

• The language is based on higher-order type theory, with

support for functions, tuples, records, cotuples,

predicate subtypes, dependent types, and inductive

data types.

• Typechecking is undecidable, and leads to proof

obligations, called Type correctness conditions (TCCs)

Sam Owre AFM06 tutorial: 3



'

&

$

%

PVS Theories

• Specifications consist of a collection of theories, each

of which primarily consists of types, constants, and

formulas

• Theories may be parameterized with types or constants

(or theories)

• Theories may import other theories, providing instances

for the parameters

• Theories may include an ASSUMING section, imposing

constraints on its parameters

Sam Owre AFM06 tutorial: 4



'

&

$

%

Declarations

Declarations of PVS include:

• types - defined or uninterpreted, empty or nonempty

• constants and (logical) variables

• definitions - recursive definitions need a measure

• formulas - axioms, assumptions, lemmas, etc.

• inductive and coinductive definitions

• judgements - provide typing judgements to the

typechecker and prover

• conversions - provide automatic conversions

• auto-rewrites - used to initialize proofs

• libraries - associates names with external directories

• macros - expanded during typechecking

Sam Owre AFM06 tutorial: 5



'

&

$

%

Example Theory

list2finseq[T: TYPE]: THEORY

BEGIN

l: VAR list[T]

fs: VAR finseq[T]

n: VAR nat

list2finseq(l): finseq[T] =

(# length := length(l),

seq := (LAMBDA (x: below[length(l)]): nth(l, x)) #)

finseq2list_rec(fs, (n: nat | n <= length(fs))): RECURSIVE list[T] =

IF n = 0

THEN null

ELSE cons(fs‘seq(length(fs) - n), finseq2list_rec(fs, n-1))

ENDIF

MEASURE n

finseq2list(fs): list[T] = finseq2list_rec(fs, length(fs))

CONVERSION list2finseq, finseq2list

END list2finseq

Sam Owre AFM06 tutorial: 6



'

&

$

%

PVS Tool

• Emacs user interface, but can be run stand-alone

• Proof trees and theory hierarchies may be displayed

• Extensive set of prelude theories

• Large number of libraries, including analysis, graph

theory, finite sets

• Primarily implemented in Common Lisp

• Recently ported to CMU Common Lisp - started SBCL

port

• Soon will be open source (GPL)

Sam Owre AFM06 tutorial: 7



'

&

$

%

What’s New? - Summary

• Covered In this talk:

◦ Cotuples

◦ Type Extensions

◦ Structural Subtypes

◦ Recursive Judgements

◦ Theory Interpretations

• Not covered:

◦ Random Testing

◦ Yices integration

◦ Coinductive definitions

◦ Codatatypes

◦ PVSio

◦ Translation to CLEAN

Sam Owre AFM06 tutorial: 8



'

&

$

%

Cotuples

• Cotuples (also known as sums or coproducts) create a

disjoint union of types:

[int + bool + [int -> bool]]

• This is roughly equivalent to the (non-recursive)

datatype

co: DATATYPE

BEGIN

in_1(out_1: int): in?_1

in_2(out_2: bool): in?_2

in_3(out_3: [int -> bool]): in?_3

END co

but without the need to name the type, and without

generating extra baggage (axioms, induction schemas,

etc.)

Sam Owre AFM06 tutorial: 9



'

&

$

%

Cotuple Expressions

• Cotuples have injections IN i, predicates IN? i, and

extractions OUT i

• Given

cT: TYPE = [int + bool + [int -> int]]

• IN 2(true) creates a cT element, and CASES is used to

select, e.g., from c: cT:

CASES c OF

IN_1(i): i + 1,

IN_2(b): IF b THEN 1 ELSE 0 ENDIF,

IN_3(f): f(0)

ENDCASES

Sam Owre AFM06 tutorial: 10



'

&

$

%

Cotuple Typechecking

• Expressions such as IN 1(3) cannot be typechecked

inside out

• Two extensions made to handle this:

◦ The typechecker now allows (internal) cotuple type

variables - must be instantiated from the context

◦ The grammar allows the type to be specified

directly: IN 1[cT](3)

• The latter is needed for situations where the context

cannot determine the type: IN 1(3) = IN 1(4)

• These extensions were also applied to tuple projections,

e.g., the type of PROJ 1 may be determined from

context, or given explicitly as PROJ 1[[int, int, bool]]

Sam Owre AFM06 tutorial: 11



'

&

$

%

Type Extensions

• Type extensions make it easy to extend a record or

tuple type by adding more components:

location: TYPE = [# x, y, z: real #]

vehicle: TYPE = [# c: Class, weight: real,

pilot: person #]

located_vehicle: TYPE = location WITH vehicle

• Fields may be shared, as long as the types are the

same:

[# x: int, y: above(x) #] WITH [# x: int, z: upfrom(x) #]

• Dependencies must stay local:

[# x, y: int #] WITH [# z: subrange(x, y)) #]

this is not allowed

• Similarly for tuple types - the types simply append

Sam Owre AFM06 tutorial: 12



'

&

$

%

Structural Subtypes

Structural subtypes provide partial support for

object-oriented specifications by allowing class hierarchies to

be modeled

genpoints[gpoint: TYPE <: [# x, y: real #]]: THEORY

BEGIN

move(p: gpoint)(dx, dy: real): gpoint =

p WITH [‘x := p‘x + dx, ‘y := p‘y + dy]

END genpoints

colored_points: THEORY

BEGIN

Color: TYPE = {red, green, blue}
colored_point: TYPE = [# x, y: real, color: Color #]

IMPORTING genpoints[colored_point]

x, y: real

p: VAR colored_point

move0: LEMMA move(p)(0, 0) = p

same_color: LEMMA move(p)(x, y)‘color = p‘color

END colored_points

Sam Owre AFM06 tutorial: 13



'

&

$

%

Structural and Predicate Subtypes

• Structural and predicate subtypes are distinct:

unit_disk: THEORY

BEGIN

point: TYPE = [# x, y: real #]

unit_disk: TYPE = {p : point | p‘x * p‘x + p‘y * p‘y < 1}
IMPORTING genpoints[unit_disk]

...

END unit_disk

• Now move(p)(2,0) is no longer in the unit disk.

Sam Owre AFM06 tutorial: 14



'

&

$

%

Structural and Predicate Subtypes

It is possible to use both:

genpoints[gpoint: TYPE <: [# x, y: real #],

spoint: TYPE FROM gpoint]: THEORY

BEGIN

move(p: spoint)(dx, dy: real): spoint =

LET newp = p WITH [‘x := p‘x + dx, ‘y := p‘y + dy]

IN IF spoint_pred(newp) THEN newp ELSE p ENDIF

END genpoints

Sam Owre AFM06 tutorial: 15



'

&

$

%

Recursive Judgements

• Recursive judgements are judgements that apply to

recursive functions

• As judgements, they work exactly the same as the

corresponding non-recursive judgements

• The advantage is that the TCCs generated follow the

structure of the recursive definition, and thus are

generally easier to prove

• In effect, the TCCs include the base case(s) and the

inductive step(s) separately

• The (slight) disadvantage is that it is no longer obvious

which TCCs are associated with the judgement

• This supports the specification style in which all proofs

are pushed into TCCs, and are made as automatic as

possible

Sam Owre AFM06 tutorial: 16



'

&

$

%

Recursive Judgement Example

append_int(l1, l2: list[int]): RECURSIVE list[int] =

CASES l1 OF

null: l2,

cons(x, y): cons(x, append_int(y, l2))

ENDCASES

MEASURE length(l1)

append_nat: JUDGEMENT append_int(a, b: list[nat]) HAS_TYPE list[nat]

This yields the TCC

append_nat: OBLIGATION

FORALL (a, b: list[nat]):

every[int]({i: int | i >= 0})(append_int(a, b));

Which is difficult to prove automatically (or manually)

Sam Owre AFM06 tutorial: 17



'

&

$

%

Recursive Judgement Example

Adding the RECURSIVE keyword:

append_nat: RECURSIVE JUDGEMENT

append_int(a, b: list[nat]) HAS_TYPE list[nat]

We get the TCC

append_nat_TCC1: OBLIGATION

FORALL (a, b: list[nat], x: int, y: list[int]):

every({i: int | i >= 0})(append_int(a, b)) AND a = cons(x, y) IMPLIES

every[int]({i: int | i >= 0})(cons[int](x, append_int(y, b)));

Which is easily discharged with grind

Sam Owre AFM06 tutorial: 18



'

&

$

%

Theory Interpretations

• Theory interpretations allow a given source theory to

be viewed as another target theory, for example,

viewing the integers as a group over addition.

• A theory interpretation gives values to uninterpreted

types and constants of the source in terms of the target

• Axioms of the source are interpreted as TCCs that

must be proved for soundness

• All other formulas are interpreted, and considered to be

proved if their parent formula is (proofchain analysis)

Sam Owre AFM06 tutorial: 19



'

&

$

%

Uses of Theory Interpretations

• Theory Interpretations are used for:

consistency - checking that the axioms are not

inconsistent

refinement - providing an “implementation” of a

theory

debugging - checking that the intended model(s) are

instances of the general theory

Sam Owre AFM06 tutorial: 20



'

&

$

%

Theory Interpretation Example

th[T: TYPE, x: T]: THEORY

BEGIN

S: TYPE

y: S

...

END

thi: THEORY

BEGIN

IMPORTING[nat, 0]{{ S := bool, y := true }}

...

END thi

Sam Owre AFM06 tutorial: 21



'

&

$

%

Theory Interpretations and Parameters

• Theory interpretations are an extension of theory

parameters

• The following are essentially equivalent:

t1[S,T:TYPE, x:S, y:T]:THEORY

BEGIN

...

END t1 t2[S:TYPE,x:S]:THEORY

BEGIN

T: TYPE

y: T

...

END t2

t3:THEORY

BEGIN

S,T: TYPE

x: S

y: T

...

END t3

Sam Owre AFM06 tutorial: 22



'

&

$

%

Theory Parameters vs Mappings

Though logically equivalent, there are differences:

Typechecking - instances can often be automatically

derived, especially for types.

Refinement - in mapping to code, uninterpreted types and

constants eventually need to be mapped, unlike

parameters.

Sam Owre AFM06 tutorial: 23



'

&

$

%

Theories as Parameters

In addition to type and constants, theories may takes other

theories as parameters

gr[grp: THEORY group]: THEORY

BEGIN

x, y: VAR G

unique_id: LEMMA (FORALL x: x + -x = y AND -x + x = y) => y = 0

END gr

Theory declarations may be also declared in-line (as with

types and constants):

gr: THEORY

BEGIN

grp: THEORY group

x, y: VAR G

unique_id: LEMMA (FORALL x: x + -x = y AND -x + x = y) => y = 0

END gr

Sam Owre AFM06 tutorial: 24



'

&

$

%

Theory Copies

• Theory declarations must create theory copies of the

specified theories

group_homomorphism[G1, G2: THEORY group]: THEORY

BEGIN

x, y: VAR G1.G

f: VAR [G1.G -> G2.G]

homomorphism?(f): bool = FORALL x, y: f(x + y) = f(x) + f(y)

% fooey: LEMMA G1.0 = G2.0

hom_exists: LEMMA EXISTS f: homomorphism?(f)

END group_homomorphism

Sam Owre AFM06 tutorial: 25



'

&

$

%

Theory Copies Issues

• As the theory copies must be “stand-alone”, this

generally means that there must not be any

declarations preceding the theory declaration

(IMPORTINGs are OK)

• Otherwise there will either be circular references, or

ambiguity.

• In the future, we plan to allow references to partial

theories (theories up to a declaration), which will then

allow more freedom in theory declaration placement

• Theory copies differ according to whether the

interpreted symbols are substituted away, become

definitions, or are simple renamings

Sam Owre AFM06 tutorial: 26



'

&

$

%

Theory Copies Example

• group: THEORY

BEGIN

G: TYPE+

+: [G, G -> G]

0: G

-: [G -> G]

x, y, z: VAR G

associative_ax: AXIOM FORALL x, y, z: x + (y + z) = (x + y) + z

identity_ax: AXIOM FORALL x: x + 0 = x

inverse_ax: AXIOM FORALL x: x + -x = 0

idempotent_is_identity: LEMMA x + x = x => x = 0

END group

• group_mappings: THEORY

BEGIN

G1: THEORY = group{{ G := int, + := +, 0 := 0, - := - }}

G2: THEORY = group{{ G = int, + = +, 0 = 0, - = - }}

G3: THEORY = group{{ G ::= g, + ::= *, 0 ::= 1, - ::= inv }}

END group_mappings

Sam Owre AFM06 tutorial: 27



'

&

$

%

Theory Interpretations Summary

• There is more to theory interpretations:

◦ Theory views

◦ Naming conventions

◦ Nested theories

• See the Theory Interpretations document at

http://pvs.csl.sri.com/docuimentation and the release

notes for more information

• Very likely to be new theory interpretation features as

we gain experience

Sam Owre AFM06 tutorial: 28


