
NIA @ NASA LaRC

Batch Proving and Proof Scripting in PVS

César A. Muñoz
munoz@nianet.org

National Institute of Aerospace

AFM 2006

1

munoz@nianet.org

NIA @ NASA LaRC

The PVS Theorem Prover

PVS is a powerful interactive theorem prover.

For expert users:
PVS provides a powerful batch mode as well.

Why do we need a batch mode ?

2

NIA @ NASA LaRC

The PVS Theorem Prover

PVS is a powerful interactive theorem prover.

For expert users:
PVS provides a powerful batch mode as well.

Why do we need a batch mode ?

3

NIA @ NASA LaRC

The PVS Theorem Prover

PVS is a powerful interactive theorem prover.

For expert users:
PVS provides a powerful batch mode as well.

Why do we need a batch mode ?

4

NIA @ NASA LaRC

Scenario 1

After several weeks we have finished the development of an Interval library
in PVS: 10 files, 322 lemmas.

We want to double check that the status of all the lemmas.

A new version of PVS is available. We want to recheck all the proofs.

5

NIA @ NASA LaRC

Scenario 2

Consider the function

r(φ) =
a

1 + (1− f)2 tan2 φ
,

where a and f are constants. For efficiency reasons, we want to
approximate the function r(φ) by the polynomial

r̂(φ) =
4439091

4
+ (φ

2 − φ2)×
(

9023647

4
+ (φ

2 − φ2) ×(
13868737

64
+ (φ

2 − φ2) ×
(

13233647

2048
+ (φ

2 − φ2) ×(
−1898597

16384
+ (φ

2 − φ2) × −6661427

131072

))))
,

where φ = 715
512 and φ ∈ [0, φ].

6

NIA @ NASA LaRC

Problem

We want to prove that∣∣∣∣e(φ)

r(φ)

∣∣∣∣ ≤ 1.36× 10−6,

where e(φ) = r(φ)− r̂(φ).

In PVS,

PHI : Interval = [| 0,715/512 |]

RI : LEMMA
FORALL (phi:real) :

phi ## PHI IMPLIES
|e(phi) / r(phi)| ## [| 0,136/1000000000 |]

7

NIA @ NASA LaRC

Automatic Proof by Interval Splitting

Strategy:

1 Use Interval’s numerical on [0, φ].

2 If step 1 doesn’t work, split interval into [0, φ
2] and [φ

2 , φ], and
recursively go to step 1.

Problem: Very inefficient approach when a large number of splittings
are needed (in this case about 10.000).

Solution: Compute the splitting outside the theorem prover and
generate PVS files with lemmas and proofs (in this case 3 lemmas per
splitting).

8

NIA @ NASA LaRC

Automatic Proof by Interval Splitting

Strategy:

1 Use Interval’s numerical on [0, φ].

2 If step 1 doesn’t work, split interval into [0, φ
2] and [φ

2 , φ], and
recursively go to step 1.

Problem: Very inefficient approach when a large number of splittings
are needed (in this case about 10.000).

Solution: Compute the splitting outside the theorem prover and
generate PVS files with lemmas and proofs (in this case 3 lemmas per
splitting).

9

NIA @ NASA LaRC

Automatic Proof by Interval Splitting

Strategy:

1 Use Interval’s numerical on [0, φ].

2 If step 1 doesn’t work, split interval into [0, φ
2] and [φ

2 , φ], and
recursively go to step 1.

Problem: Very inefficient approach when a large number of splittings
are needed (in this case about 10.000).

Solution: Compute the splitting outside the theorem prover and
generate PVS files with lemmas and proofs (in this case 3 lemmas per
splitting).

10

NIA @ NASA LaRC

PVS in Batch Mode
For Expert Users

PVS prover and Emacs interface in batch mode:
% pvs -batch

Regression testing:

;; file.el
(pvs-validate "file.log" "dir"

(let ((current-prefix-arg t))
(prove-pvs-file "file.pvs")))

% pvs -batch -l file.el

PVS prover without Emacs interface:
% pvs -raw

11

NIA @ NASA LaRC

PVS in Batch Mode
For Expert Users

PVS prover and Emacs interface in batch mode:
% pvs -batch

Regression testing:

;; file.el
(pvs-validate "file.log" "dir"

(let ((current-prefix-arg t))
(prove-pvs-file "file.pvs")))

% pvs -batch -l file.el

PVS prover without Emacs interface:
% pvs -raw

12

NIA @ NASA LaRC

PVS in Batch Mode
For Regular Users (via ProofLite’s proveit utility)

% proveit Interval/top.pvs

13

NIA @ NASA LaRC

PVS in Batch Mode
For Regular Users (via ProofLite’s proveit utility)

% proveit -importchain Interval/top.pvs

14

NIA @ NASA LaRC

PVS in Batch Mode
For Regular Users (via ProofLite’s proveit utility)

% proveit -importchain -clean Interval/top.pvs

15

NIA @ NASA LaRC

PVS in Batch Mode
For Regular Users (via ProofLite’s proveit utility)

% proveit -importchain -clean -packages Field Interval/top.pvs

16

NIA @ NASA LaRC

PVS in Batch Mode
For Regular Users (via ProofLite’s proveit utility)

% proveit -importchain -clean -packages Field Interval/top.pvs
Processing Interval/top.pvs. Writing output to file Interval/top.out.

Proof summary for theory interval
IMP_sigma_TCC1........................proved - complete
sharp_Proper..........................proved - complete
Proper_sharp..........................proved - complete
specialbrackets_TCC1..................proved - complete
Lt_Ge.................................proved - complete
Le_Gt.................................proved - complete
Abs_TCC1..............................proved - complete
Abs_TCC2..............................proved - complete
...
Theory totals: 156 formulas, 156 attempted, 156 succeeded (72.33 s)

...
Grand Totals: 322 proofs, 322 attempted, 322 succeeded (122.73 s)

17

NIA @ NASA LaRC

PVS Proof Files
For Expert Users

“The format is:

(<theory-id> (<decl-id> <default-proof-posn> (<id>
<description> <create-date> <run-date> <script> <status>
<refers-to> <real-time> <run-time> <interactive?>
<decision-procedure-used>) ...) ...)

where <default-proof-posn> is the (0-based) position of the default
proof in the list of proofs associated with the declaration. The
<create-date> is the time that the proof was first saved, and the
<run-date> is the time it was last rerun. The <real-time> and
<run-time> are the time it took the last time it was run, and
<interactive?> indicates whether that was an interactive run or not
[. . .] Most of the rest of the fields should be self-explanatory . . . ”∗

∗ Sam Owre, PVS mailing list, June 2003.18

NIA @ NASA LaRC

PVS Batch Proofs
For Regular Users (via ProofLite scripts)

PHI0 : Interval = [| 0, 82225/51200000 |]

RpI0 : LEMMA
phi ## PHI0
IMPLIES
|ep(phi)/rp(phi)| ## [| 0, 136/10000000 |]

%|- RpI0 : PROOF
%|- (instint :taylor "Ep0" :hints "Ep_deriv")
%|- QED

19

NIA @ NASA LaRC

The ProofLite Package

Package for non-interactive proof scripting in PVS:

Utility for running the theorem prover in batch mode.
A proof scripting notation where proof scripts reside in .pvs files.

Suitable for batch generation of specifications and proof scripts.

Download: http://research.nianet.org/~munoz/ProofLite

20

http://research.nianet.org/~munoz/ProofLite

NIA @ NASA LaRC

The proveit Utility

Usage: proveit [OPTION] FILE[@TH1,..,THn]*

For each FILE, proveit runs PVS in batch mode and proves theories
TH1,..,THn, which are either imported or defined in FILE.pvs. If no
theories are provided, proveit proves all theories in FILE.

-clean: Removes bin files and .pvscontext before proving

-force: Overrides current proofs with ProofLite scripts

-importchain: Proves chain of imported theories

-packages P1,..,Pn: Loads packages P1,..,Pn

-prooftraces: Output proof traces.

21

NIA @ NASA LaRC

ProofLite Scripts

ProofLite scripts are written in PVS files using the special comment
form:

l1: LEMMA a*a >= 0
%|- l1 : PROOF (grind) QED

ProofLite scripts can extend to multiple lines:

l2: LEMMA (nza/2)*(2/nza) = 1
%|- l2 : PROOF
%|- (then (skosimp)
%|- (grind))
%|- QED

22

NIA @ NASA LaRC

Sharing ProofLite Scripts

Several lemmas can share the same ProofLite script:

l3: LEMMA a*a >= 0

l4: LEMMA (nza/2)*(2/nza) = 1

%|- l3 : PROOF
%|- l4 : PROOF
%|- (grind)
%|- QED

23

NIA @ NASA LaRC

ProofLite Scripts for Name-Matching Lemmas

Name-matching lemmas can share the same ProofLite script.

The symbol * stands for an arbitrary sequence of one or more
characters, e.g.,

l3a: LEMMA a*a >= 0

l4a: LEMMA (nza/2)*(2/nza) = 1

%|- l*a : PROOF
%|- (grind)
%|- QED

24

NIA @ NASA LaRC

Macro Scripts

Name-matching lemmas can be used to create macro scripts.

The symbol $0 refers to the name of the lemma and the symbol $n
refers to n-th matching string from left to right, e.g.,

l_5_6 : LEMMA EXISTS (a) : 5 < a AND a < 6

l 6 7 : LEMMA EXISTS (a) : 6 < a AND a < 7

%|- l *_* : PROOF
%|- (then (skip-msg "Proving Lemma: $0")
%|- (inst 1 "$1 + ($2 - $1)/2")
%|- (grind))
%|- QED

25

NIA @ NASA LaRC

Parametric Scripts

Parametric scripts have the form:

%|- <script name>[e1;...;en]: PROOF
%|- <steps>
%|- QED

The symbol #n is substituted by en, e.g.,

l_8 : LEMMA EXISTS (a,b) : a+b = 8
l_9 : LEMMA EXISTS (a,b) : a+b = 9
%|- l_8[2;6] : PROOF
%|- l_9[4;5] : PROOF
%|- (then (skip-msg "Proving Lemma: $0")
%|- (inst 1 "#1" "#2")
%|- (grind))
%|- QED

26

NIA @ NASA LaRC

Installing ProofLite Scripts
Interactively

ProofLite scripts in the current theory.

Without overriding old proofs:
M-x install-prooflite-scripts-theory (C-c it).
Overriding old proofs:
M-x install-prooflite-scripts-theory! (C-c !t).

ProofLite scripts at the cursor position.

Without overriding old proofs:
M-x install-prooflite-script (C-c ip).
Overriding old proofs:
M-x install-prooflite-script! (C-c !p).

27

NIA @ NASA LaRC

Installing ProofLite Scripts
In batch mode

proveit automatically installs ProofLite scripts on untried formulas (and
on tried formulas if the option -force is used).

28

NIA @ NASA LaRC

Creating ProofLite Scripts from Proofs

ProofLite scripts can be created from proofs in two ways:

Place the cursor on the formula for which you want to create a
ProofLite script and issue the Emacs command:
M-x insert-prooflite-script (C-c 2p). The ProofLite script is
automatically inserted after the formula.

Issue the command:
M-x display-prooflite-script (C-c dp)
and enter the name of a formula. The ProofLite script of that
formula is displayed in the buffer “ProofLite”.

29

NIA @ NASA LaRC

Application: Verification of Numerical Bounds

30.000 lemmas (and their respective proof scripts) were generated and
mechanically discharged in batch mode [1].

30

NIA @ NASA LaRC

Application: Verification of ATM Concept

117 lemmas (and their respective proof scripts) were generated and mechanically
discharged in batch mode [2].

%|- T_*: PROOF (st) QED
%|- Maz_*: PROOF (smaz) QED

T_0 : LEMMA
So+Lb(iaf(1)) <= D(1,T(2))+Lb(iaf(2)) AND T(2) <= t AND
...
Lb(iaf(3))+Lf <= D(3,T(1))
IMPLIES St <= S(3,1,t)

Maz_74 : LEMMA
So+Lb(iaf(3)) <= D(3,T(4))+Lb(iaf(4)) AND
...
T(1) <= t AND D(1,t) <= Lb(iaf(1))+Lf+Lm(mahf(1))
IMPLIES Smaz <= S(3,1,t)

31

NIA @ NASA LaRC

Conclusion

The basic capabilities provided by ProofLite are already available in
proof assistants such as Coq, HOL, etc.

The ProofLite scripting notation also supports several forms of proof
sharing and proof reuse.

Proof scripts vs. user defined strategies.

32

NIA @ NASA LaRC

References

M. Dumas, G. Melquiond, and C. Muñoz.
Guaranteed proofs using interval arithmetic.
In Proceedings of the 17th IEEE Symposium on Computer Arithmetic,
ARITH-17, Cape Cod, Massachusetts, 2005.

C. Muñoz and G. Dowek.
Hybrid verification of an air traffic operational concept.
In Proceedings of IEEE ISoLA Workshop on Leveraging Applications
of Formal Methods, Verification, and Validation, Columbia, Maryland,
2005.

33

