
Multiprocessor Memory Model Verification

Paul Loewenstein, Shailender Chaudhry,
Robert Cypher, Chaiyasit Manovit

21 August 2006

Federated Logic Conference 2006

Automated Formal Methods 1 21 August 2006



Summary

Introduction.

Related Work.

Sparc TSO Memory Model.

Strand Model.

Golden Memory Model.

Conclusion.

Further work.

Federated Logic Conference 2006

Automated Formal Methods 2 21 August 2006



Introduction

No mechanized formal methods in this work.

Former formal methods work provided invaluable education.

Architectural properties required to implement TSO
understood.

Simulation-based verification of RTL against those
properties, which are strictly stronger than TSO.

Federated Logic Conference 2006

Automated Formal Methods 3 21 August 2006



Related Work

[1] A. E. Condon, M. D. Hill, M. Plakal, and D. J. Sorin. Using
Lamport clocks to reason about relaxed memory models. In
Proceedings of Fifth International Symposium on

High-Performance Computer Architecture, Orlando, Florida,
Jan. 1999.

[2] D. J. Sorin, M. Plakal, M. D. Hill, and A. E. Condon. Lamport
clocks: Reasoning about shared memory correctness.
Technical Report CS-TR-1367, University of
Wisconsin-Madison, Mar. 1998.

Federated Logic Conference 2006

Automated Formal Methods 4 21 August 2006



Related Work

[3] SPARC International. The SPARC Architecture Manual:

Version 8. Prentice-Hall, 1992.

[4] SPARC International: David L. Weaver & Tom Germond,
Editors. The SPARC Architecture Manual: Version 9.
Prentice-Hall, 1994.

Federated Logic Conference 2006

Automated Formal Methods 5 21 August 2006



Related Work

[5] C. Manovit and Sudheendra. Efficient algorithms for
verifying memory consistency. In SPAA’05: Proceedings of

the 17th Annual ACM Symposium on Parallelism in Algorithms

and Architectures, pages 245–252, New York, NY, 2005. ACM
Press.

[6] A. Roy, S. Zeisset, C. J. Fleckenstein, and J. C. Huang. Fast
and generalized polynomial time memory consistency
verification. In Proceedings Computer Aided Verification,
number 4144 in Lecture Notes in Computer Science, pages
503–516, Seattle, WA, Aug. 2006. Springer.

Federated Logic Conference 2006

Automated Formal Methods 6 21 August 2006



TSO Memory Model

“Total Store Order”—deceptive name.

Specification for the programmer.

Defines a “memory order” for each multiprocessor execution.

Rules (“axioms”) that hold between the execution and the
memory order.

If a memory order exists that conforms to the rules, then the
execution is a valid TSO execution.

Federated Logic Conference 2006

Automated Formal Methods 7 21 August 2006



TSO Memory Model

Federated Logic Conference 2006

Automated Formal Methods 8 21 August 2006



TSO Memory Model

No concept of real-time.

Defined in terms of:

• Per-strand program order of executed instructions
(including memory operations) and

• System-wide memory order of memory operations.

Memory order is constrained by program order according to
TSO rules.

Load value is defined in terms of memory order, program
order and value of stores.

Federated Logic Conference 2006

Automated Formal Methods 9 21 August 2006



TSO Memory Model
A load program-ordered before another load is also
memory-ordered before that load:

∀lalb.la <p lb ⇒ la <m lb (1)

A store program-ordered before another store is also
memory-ordered before that store:

∀sasb.sa <p sb ⇒ sa <m sb (2)

A load program-ordered before any store is also
memory-ordered before that store:

∀ls.l <p s ⇒ l <m s (3)

The value of a load to address a is the value of the latest
store in memory order that is either program-ordered before
the load or memory-ordered before the load:

Value(la) = Value(Max
m

({sa : sa <m la} ∪ {sa : sa <p la}) (4)

Federated Logic Conference 2006

Automated Formal Methods 10 21 August 2006



Strand Hardware Model

For “strand” read “processor.”

Each strand, coupled with its program, can be considered as
a finite state machine that inputs through memory loads and
outputs through memory stores.

The high-level (programmer’s) view of a strand executes
instructions from its program in order.

The implementation of a strand executes instructions
(calculates register updates etc.) out-of-order. This
out-of-order execution is invisible to the programmer.

In particular, memory accesses must appear to occur in TSO
order, even when data is transferred out-of-order.

Instructions retire in order (state change rendered
irrevocable).

Federated Logic Conference 2006

Automated Formal Methods 11 21 August 2006



Strand Abstract Model

In the verification (simulation) environment, the strand
hardware model is run in parallel with an in-order model of
Sparc processor behavior.

In-order model is stepped when instructions retire
(irrevocably update architectural state of strand).

Golden memory model supplies data values for retired loads
and accepts retired stores.

Federated Logic Conference 2006

Automated Formal Methods 12 21 August 2006



Loads and Stores

Two events associated with each load or store:

1. Retiring, when the architectural state of the strand is
irrevocably updated.

2. Committing, when a store can affect other strand’s loads,
or when a load ceases to see other strand’s stores.

Stores retire before committing.

Loads commit before retiring.

Federated Logic Conference 2006

Automated Formal Methods 13 21 August 2006



Problem

A hardware load reads memory and bypasses from older
(including unretired) uncommitted stores before load retires.

Until a load retires, it is speculative and may be discarded
rather than retired.

Strand abstract model doesn’t supply stores until retirement.

Strand abstract model doesn’t accept data for loads until the
loads retire.

Federated Logic Conference 2006

Automated Formal Methods 14 21 August 2006



Golden Memory Model

Federated Logic Conference 2006

Automated Formal Methods 15 21 August 2006



Golden Memory Model

Model of architecture’s implementation of TSO.

Demonstrably implements TSO (by informal mathematical
proof).

No caches.

Memory order compatible with real-time order across all
strands (property of system architecture).

Global Memory updated in real time.

Federated Logic Conference 2006

Automated Formal Methods 16 21 August 2006



Golden Memory Model

Loads commit (read memory) before retirement.

Stores commit (store to memory) after retirement.

Golden memory cannot see older unretired stores when loads
commit, because stores are not signaled to golden memory
until retirement.

Golden Memory doesn’t need to finally determine load data
value until load retires, when it can see the older stores that
have not yet committed.

This leaves the stores that committed between the
committing of the load and the load’s retirement, which are
taken into account by bypassing commiting stores to the
load snapshots.

Federated Logic Conference 2006

Automated Formal Methods 17 21 August 2006



Coupling Models Together

Events supplied by hardware model:

• Instruction retirement (anonymous—just step abstract
strand model).

• Committing of loads (taking snapshot). Can involve some
adventurous probing of the hardware design.

• Abandonment of speculative loads (discarding snapshot).
Similarly adventurous probing.

• Committing of stores.

• Discarding of load snapshots.

Events supplied by Strand abstract model:

• Retirement of loads.

• Retirement of stores.

Federated Logic Conference 2006

Automated Formal Methods 18 21 August 2006



Conclusion

Much stronger checking of design, by verification against
designer intent rather than TSO specification.

Avoids complex analysis of simulation logfile to search for a
valid memory order.

Allows strand model to run in synchronism with hardware
model running arbitrary multiprocessor programs.

Close examination of implentation details to implement
probing.

No direct use of mechanized formal methods in this work.

Formal methods education invaluable for generating insight
into how hardware is intended to work.

Depends on rigorous but informal reasoning about how the
hardware model implements TSO.

Federated Logic Conference 2006

Automated Formal Methods 19 21 August 2006



Further Work

If caches maintain coherence in non-real-time order, then
golden model can get much more complex and may require
formal verification against TSO.

Federated Logic Conference 2006

Automated Formal Methods 20 21 August 2006


