
Specification, Proof, and Model Checking of the
Mondex Electronic Purse

Chris George and Anne Haxthausen

United Nations University

International Institute for Software Technology

Macao SAR, China

and

Informatics and Mathematical Modelling

Technical University of Denmark

Lyngby, Denmark

Chris George and Anne Haxthausen 1

eaFrom

val

ack

epv

eaTo

epr

eaFrom

req

epa

To purse From purse

Chris George and Anne Haxthausen 2

The Problem

1. Specify the protocol in detail

2. Prove that each operation satisfies two conditions:

(a) NoValueCreation:
inPurses + inTransit never increases

(b) AllValueAccounted :
inPurses + inTransit + lost is constant

We will call such an operation correct.

Chris George and Anne Haxthausen 3

The RAISE Approach

3 levels of specification:

1. Abstract: a problem in accounting. No purses; no messages; just
three “bottom line” values and four abstract correct operations
that transfer money between them.

2. Intermediate: abstract states and (complete set of) abstract
operations. No details of the mechanisms that preserve the
(asserted) invariant. Prove that each intermediate operation
implements an abstract (and hence correct) operation.

3. Concrete: full details of the protocol. Prove that each operation
implements its intermediate version.

Chris George and Anne Haxthausen 4

Abstract Specification

4 abstract operations

TransferLeft
inPurses′ = inPurses − valu(m) ∧
(lost′ = lost ∧ inTransit′ = inTransit + valu(m) ∨
lost′ = lost + valu(m) ∧ inTransit′ = inTransit)

TransferRight
inPurses′ = inPurses + valu(m) ∧
lost′ = lost ∧
inTransit′ = inTransit − valu(m)

Chris George and Anne Haxthausen 5

Abort

∃ v : Nat •
inPurses′ = inPurses ∧
lost′ = lost + v ∧
inTransit′ = inTransit − v

No op
inPurses′ = inPurses ∧
lost′ = lost ∧
inTransit′ = inTransit

No op is really a special case of Abort.

It is easy to prove these 4 operations are correct.

Chris George and Anne Haxthausen 6

Key relations

totalCirculating = inPurses + inTransit

totalAccounted = inPurses + lost + inTransit

inPurses = Σbalance(purses)

inTransit = Σvalu(toInEpv ∩ (fromLogs ∪ fromInEpa)

lost = Σvalu(toLogs ∩ (fromLogs ∪ fromInEpa))

toInEpv /fromInEpa are the payment details of purses with status
epv /epa respectively.

A payment details goes into toLogs/fromLogs if a purse aborts or
restarts from status epv /epa respectively.

Chris George and Anne Haxthausen 7

Intermediate Specification

• Two modules: PURSE1 and WORLD1

• Both abstract:

– Abstract state types Purse and World

– Function signatures

– State invariants as axioms

– Observer-generator axioms

• Collection of operations is complete

• States are incomplete (no purse logs, sequence numbers,
archive)

• fromLogs and toLogs are abstract observers

Chris George and Anne Haxthausen 8

Intermediate Specification: World: invariant

axiom
[isWorldAxiom]
∀ w : World, p : P.Purse •

p ∈ rng purses(w) ⇒
(P.status(p) = T.epr ⇒

P.pdAuth(p) 6∈ fromInEpa(w) ∧
P.pdAuth(p) 6∈ fromLogs(w) ∧
(T.req(P.pdAuth(p)) ∈ ether(w) ⇒

P.pdAuth(p) ∈ toInEpv(w) ∧ P.pdAuth(p) 6∈ toLogs(w) ∨
P.pdAuth(p) ∈ toLogs(w) ∧ P.pdAuth(p) 6∈ toInEpv(w))) ∧

... ∧
visible(w) ⊆ ether(w)

Chris George and Anne Haxthausen 9

Concrete Specification

• Two modules: PURSE2 and WORLD2

• All types concrete and complete

• Almost all functions concrete; some intentional
underspecification (loss of messages; increase in sequence
numbers; purse payment details in eaTo, eaFrom) handled with
axioms

• fromLogs and toLogs now a construction from purse logs and
archive

Chris George and Anne Haxthausen 10

Concrete Specification: World: invariant 1

isWorld : WorldBase → Bool
isWorld(w) ≡

(∀ n : Name •

n ∈ dom archive(w) ⇒ n ∈ dom purses(w)) ∧
(∀ pd : PayDetails •

req(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd)))) ∧

(∀ pd : PayDetails •

val(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧ ffrom(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd))) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd)))) ∧

Chris George and Anne Haxthausen 11

Concrete Specification: World: invariant 2

(∀ pd : PayDetails •

ack(pd) ∈ ether(w) ⇒
to(pd) ∈ purses(w) ∧ ffrom(pd) ∈ purses(w) ∧
ffrom(pd) ∈ purses(w) ∧
toSeqNo(pd) < nextSeqNo(purses(w)(to(pd))) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd)))) ∧

Chris George and Anne Haxthausen 12

Concrete Specification: World: invariant 3

(∀ pd : PayDetails •

pd ∈ fromLogs(w) ⇒
req(pd) ∈ ether(w) ∧
fromSeqNo(pd) < nextSeqNo(purses(w)(ffrom(pd))) ∧
(status(purses(w)(ffrom(pd))) ∈ {epr, epa} ⇒

fromSeqNo(pd) < fromSeqNo(pdAuth(purses(w)(ffrom(pd)))))) ∧
(∀ pd : PayDetails •

pd ∈ toLogs(w) ⇒
req(pd) ∈ ether(w) ∧
ack(pd) 6∈ ether(w) ∧
(status(purses(w)(to(pd))) ∈ {epv, eaTo} ⇒

toSeqNo(pd) < toSeqNo(pdAuth(purses(w)(to(pd)))))) ∧

Chris George and Anne Haxthausen 13

Concrete Specification: World: invariant 4

(∀ n : Name •

n ∈ dom purses(w) ∧ status(purses(w)(n)) = epa ⇒
req(pdAuth(purses(w)(n))) ∈ ether(w)) ∧

(∀ n : Name •

n ∈ dom purses(w) ∧ status(purses(w)(n)) = epr ⇒
val(pdAuth(purses(w)(n))) 6∈ ether(w) ∧
ack(pdAuth(purses(w)(n))) 6∈ ether(w)) ∧

(∀ n : Name •

n ∈ dom purses(w) ∧ status(purses(w)(n)) = epv ⇒
req(pdAuth(purses(w)(n))) ∈ ether(w) ∧
ack(pdAuth(purses(w)(n))) 6∈ ether(w)) ∧

Chris George and Anne Haxthausen 14

Concrete Specification: World: invariant 5

(∀ pd : PayDetails •

req(pd) ∈ ether(w) ∧ ack(pd) 6∈ ether(w) ⇒
(pd ∈ toInEpv(w) ∨ pd ∈ toLogs(w))) ∧

(∀ pd : PayDetails •

val(pd) ∈ ether(w) ∧ pd ∈ toInEpv(w) ⇒
pd ∈ fromInEpa(w) ∨ pd ∈ fromLogs(w)) ∧

Chris George and Anne Haxthausen 15

Concrete Specification: World: invariant 6

(∀ pd : PayDetails, n : Name •

exceptionLogResult(n, pd) ∈ ether(w) ⇒
n ∈ dom allLogs(w) ∧ pd ∈ allLogs(w)(n)) ∧

(∀ pds : PayDetailsSet1, n : Name •

exceptionLogClear(n, image(pds)) ∈ ether(w) ⇒
n ∈ dom archive(w) ∧ pds ⊆ archive(w)(n)) ∧

(∀ m : Message •

m ∈ visible(w) ⇒ m ∈ ether(w))

14 conjuncts which must be proved as invariant for 11 operations!!

Chris George and Anne Haxthausen 16

The Argument for Correctness

1. The abstract operations LeftTransfer, RightTransfer, Abort and
No op are correct ; also sequence preserves correctness.

2. Each intermediate operation refines an abstract operation.

3. Each concrete operation refines the corresponding intermediate
operation.

Chris George and Anne Haxthausen 17

Easy!

Perhaps ...

• This is the 10th version of the specification, which is 2200 lines
of RSL in 13 files.

• There are 366 proofs, perhaps half proved automatically.

• A typical invariant proof for the concrete specification is about
300 prover commands (recall there are 11 of these proofs).

• Other unpleasant proofs were that the concrete invariant implied
the abstract one (150 prover commands), and that some sets
defined by comprehension are finite.

Chris George and Anne Haxthausen 18

Proof of Invariant for Req(skosimp*)

(typepred "w!1")

(expand "isWorld" −)

(flatten)

(label "arch" −1)

(label "reqether" −2)

(label "valether" −3)

(label "ackether" −4)

(label "fromlogs" −5)

(label "tologs" −6)

(label "fromepa" −7)

(label "fromepr" −8)

(label "toepv" −9)

(label "reqack" −10)

(label "valepv" −11)

(label "logres" −12)

(label "logclear" −13)

(label "visether" −14)

(inst−cp "visether" "m!1")

(label "isWorld" 1)

(assert −16)

(flatten)

(typepred ...)

(expand "isPurse")

(typepred "purses(w!1)")

(hide −1)

(expand "isPursesMap")

(label "names" −1)

(inst−cp "names" "n!1")

(flatten)

(label "exlog" −3)

(expand "isWorld")

(split "isWorld")

(skosimp*)

(inst "valether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(decompose−equality −2)

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert)

(case−replace ...)

(assert)

(split "valether")

(propax) (assert)

(decompose−equality −3)

(assert)

(inst "fromepr" "n!1")

(assert)

(inst "reqether" "pd!1")

(assert)

(case−replace ...)

(assert)

(assert)

(decompose−equality −2)

(assert)

(typepred ...)

(expand "every")

(assert)

(inst "fromepr" "n!1")

(assert)

(inst "reqether" "pd!1")

(assert)

(assert)

(case−replace ...)

(assert)

(case−replace ...)

(assert)

(split "valether")

(propax) (assert)

(decompose−equality −3)

(assert)

(assert)

(assert)

(decompose−equality −2)

(assert)

(assert)

(assert)

(decompose−equality −1)

(assert)

(skosimp*)

(inst "ackether" "pd!1")

(case−replace "T.to(pd!1)=n!1")

(assert)

(flatten)

(assert)

(assert)

(flatten)

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(skosimp*)

(inst "fromlogs" "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert)

(flatten)

(assert)

(replace −1 * lr)

(name−replace ...)

(assert)

(assert)

(flatten)

(assert)

(case−replace ...)

(assert)

(name−replace ...)

(assert)

(assert)

(iw−strat−tologs) (skosimp*)

(inst "fromepa" "n!2")

(case−replace "n!2=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(iw−strat−fromepr)

(typepred ...)

(expand "isPurse")

(assert)

(flatten)

(assert)

(decompose−equality −8)

(assert)

(inst "names" "n!2")

(assert)

(skosimp*)

(inst "toepv" "n!2")

(case−replace "n!2=n!1")

(assert) (assert)

(flatten)

(assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(inst "reqack" "pd!1")

(assert)

(split "reqack")

(skosimp*)

(inst "isWorld" "pd!2")

(case−replace "T.to(pd!2)=n!1")

(assert) (assert)

(flatten)

(inst "isWorld" "pd!1")

(assert)

(case−replace "T.to(pd!1)=n!1")

(assert) (assert)

(skosimp*)

(inst "valepv" "pd!1")

(assert)

(skosimp*)

(case−replace "T.to(pd!2)=n!1")

(assert) (assert)

(case−replace ...)

(assert)

(split "valepv")

(skosimp*)

(inst "isWorld" "pd!3")

(case−replace "T.ffrom(pd!3)=n!1")

(assert) (assert)

(flatten)

(inst "isWorld" "pd!1")

(assert)

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(assert)

(decompose−equality −2)

(assert)

(typepred ...)

(expand "isPurse")

(assert)

(flatten)

(assert)

(inst 4 "pd!1")

(case−replace "T.ffrom(pd!1)=n!1")

(assert) (assert)

(inst 1 "pd!2")

(assert)

(assert)

(skosimp*)

(inst "logres" "pd!1" "n!2")

(assert)

(expand "allLogs")

(case−replace "n!2=n!1")

(assert) (assert)

(case−replace ...)

(assert) (assert)

(skosimp*)

(assert)

(inst "logclear" "pds!1" "n!2")

(assert)

(skosimp*)

(inst "visether" "m!2")

(assert)

(use "hideSome_def")

(assert)

(expand "subset?")

(inst? −1)

(assert)

(lemma "hideSome_def")

(expand "subset?")

(expand "member")

(inst ...)

(inst −1 "m!2")

(replace −3 * lr)

(expand "union")

(assert)

(assert)

(split "visether")

(assert) (assert)

Chris George and Anne Haxthausen 19

Automation?

• The biggest problem is identifying the invariant.

– Too strong: helps with proofs of refinement but can’t be
proved.

– Too weak: easier to prove but refinement proofs fail.

• This problem has many large proofs with similar structure:
tactics are worth developing.

– The perfect tactic is very hard to write.

– A tactic that does all the setting up of standard hypotheses,
names them, and does the basic case analysis and tries to
discharge the results can be very useful.

• One incautious grind generated (eventually) 1580 subgoals!

Chris George and Anne Haxthausen 20

Did We Capture the Requirements Correctly?

• There may be many subtle points in 2200 lines of RSL!

• In the Z specification, for example, the description of a complete
transfer is only informally stated, but seems to be
unimplementable, because it requires you to know in advance a
property of Abort that is underspecified (and perhaps
nondeterministic): possible increase in nextSeqNo.

• Is there an “axiom false” somewhere?

Chris George and Anne Haxthausen 21

Are our tools correct?

We rely on

• Translator from RSL to PVS

• PVS proof engine

Chris George and Anne Haxthausen 22

Mondex in SAL

• Translated the concrete specification automatically from RSL to
SAL.

• 8 versions to current one that runs with sal-smc (on a standard
PC with 512MB of memory).

• Many changes to state structure, and reduced functionality.

• 3 versions used:

– WORLD2 for correctness and liveness properties.

– WORLD2INV for checking invariants.

– CC version (special translation of WORLD2INV) for checking
confidence conditions.

Chris George and Anne Haxthausen 23

Why model check when you have a proof?

• Easier to do than proof.

• Could have found mistake in invariant in one version, and
generally got more confidence that we were trying to prove
things that are true.

• Can check confidence conditions, again before proof.

• Can show liveness properties, eg that a transfer is possible.

Chris George and Anne Haxthausen 24

What was checked in SAL?

• Correctness:

– All money is accounted.

– The amount of money in circulation does not increase.

• World and purse invariants hold.

• Liveness in the sense that

– An empty purse can become non-empty.

– A non-empty purse can become empty.

– Money can be lost.

• No confidence conditions violated.

but with only 2 purses and at most 3 transfers

Chris George and Anne Haxthausen 25

Further work

• Drawing general conclusions for such systems:

– modelling

– checking

– proving

• Can we improve the automation?

• Fix PVS 3.2 bug 894

Chris George and Anne Haxthausen 26

