Towards Reusing Formal Proofs in
Verification of Fault-Tolerance

Bor zoo Bonakdar pour
Sandeep S. Kulkarni

Automated Formal Methods
(AFM’06)

Motivation
.

e \We need to gain confidence on the correctnessudtf fa
tolerance properties.

e [n the literature, the main focus has been on icatibn
of concrete fault-tolerant systems.

e \We need more general verifications, so that wanate
required to verify individual programs.

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

Motivation (cont.)

We verify the correctness of algorithms that sysitme
fault-tolerant programs ; all synthesized progravis
be correct-by-construction.

We use the theorem prover PVS
as our verification tool.

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

Outline

e Review of previous resul{soPSTR'04, TPHoLs'04]
— A formal framework for fault-Tolerance
- A fixpoint calculation library on finite sets
- Mechanical verification of automatic addition otifatolerance

e Mechanical verification of automatic synthesis of
multitolerance by reusing formal progfsmos]

e Conclusions and future work

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

Levels of Fault-Tolerance

- Nonmasking: A program is nonmasking fault-
tolerant, if after occurrence of faults it eventyal
recovers to its normal behavior.

- Masking: A program is masking fault-tolerant, if after
occurrence of faults it eventually recovers tanbsmal
behavior without violating safety.

AFM’'06 Towards Reusing Formal Proofs in Verification ofifd olerance 08/21/2006

A Fault-Tolerance Framework in PVS
« /1

FT [state TYPE]: THEORY
BEGIN
ASSUMING
ST is_finite :AASSUMPTION is_finite_type[state] Stateis a finite type
TR_is_finite :ASSUMPTION is_finite_type[[state, state]] Transitionis a finite type
ENDASSUMING

Transition: TYPE = [state, state]

StatePred: TYPE =finite_set [state]

Action: TYPE = finite_set [Transition] set of transitions
Computation Z: Action): TYPE = {A: sequence][state]dn: (A, A..,) U 2)}

StateSpace: StatePred = fullset [state] The state space

S: StatePred invariant of fault-intolerant program
p: Action program

f: Action set of faults

2. Action set of bad transitions

AFM’'06 Towards Reusing Formal Proofs in Verification ofifd olerance 08/21/2006

The Synthesis Problem

Programp

InvariantS Programp’

Specification2 Invariants’

Faultsf

A desired level of fault-tolerance

AFM’06 Towards Reusing Formal Proofs in Verification ofikd olerance 08/21/2006

Automatic Synthesis of Nonmasking Tolerance

.
%

° p':pD
(%, 8) |90 T-S0 505

AFM 06 Towards Reusing Formal Proofs in Verification ofid olerance 08/21/2006

Automatic Synthesis of Masking Tolerance
]

Step (1): Identifying
the set of states and
transitions from where
safety may be violated
by a sequence of fault
transitions.

mt={(s, s |5, 0 msL
(S, s) U 2

ms

Violation of
safety

msinit

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Automatic Synthesis of Masking Tolerance (cont.)

.
%

Step (2): Identifying
and removing
deadlock states

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

A Fixpoint Theory on Finite Sets
o]

SupposeX is a state predicate ag@X) denotes the
set of deadlock states Xf

X =X=-g(X)
X, =X =g (X)

X, =X 1—9(X,,) whereg (X ,) =0

Xn = Xn-l

Xn+1 = Xn

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

Largest Fixpoint

DecFunc: TYPE = [A: StatePred - {B: StatePred | B L1 A)}]
Dec (: nat, X : StatePred)(g : DecFunc): RECURSIVE StatePred =
IFi=0THEN

X
ELSE

Dedi—1,X)(9) —a(Dedi —1,X)(9))
ENDIF
MEASURE (A (X: nat, y: StatePred): x)
LgFix (X : StatePred)(g : DecFunc): StatePred =
{s| U (k: nat): sd Dec k, X)(9))}

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Largest Fixpoint and Deadlock States

Theorem [LopsTrR04] Further recalculation of fixpoint
returns the empty set :

g (LgFix (X)(g)) = U

DeadlockState@: Action)(ds: StatePred): StatePred =
{$] & Udg UM s (1 dsg) = (s 8) U P}

S;: StatePred = LgFix (S- mg(DeadlockStatdp - mt))

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Automatic Addition of Masking Fault-Tolerance

Let T, =true—ms

Repeat
- Recalculates, and T, such that:
e S is reachable from all statesTh- S,.
e T,is closed imp, U f.

Until S; and T, remain unchanged

Remove cycles fronh;- S

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Automatic Synthesis of Multitolerance [psno4]

e Multitolerant programstolerate different classes of faults and provide
different level of fault-tolerance to each class.

e |If faults from different classes occur, the mulgt@ant program
provides the minimum level of fault-tolerance:

Level of FT | Nonmasking Masking

Nonmasking | Nonmasking | Nonmasking

Masking Nonmasking Masking

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Revisiting the Synthesis Problem

Programp

InvariantS Programp’
Specification2 >
fronmasking InvariantS’

fmaskinq g

A desired level of multitolerance

AFM’06 Towards Reusing Formal Proofs in Verification ofikd olerance 08/21/2006

Generalizing Formal Specification

add_muiltift [state TYPE]: THEORY

BEGIN
IMPORTING add_nonmasking[state]
IMPORTING add_masking[state]

fnonmaskiné; ACtiIOI’]
maskiné Act!on
nonmasking-maskir:lg Action = 1:nonmaskingD fmasking
mslnit(anyFault : Action) : StatePred =
{sy | 05, : (S) O anyFaulttl(s,, s) 0 2,,)} /| faults directly violate safety

RevReachStates(anyFault : Actiais)(StatePred) : StatePred =// backward reachability
{s] 55, : (s, Urs O(sy, s) U anyFaults, [rs)}

ms(anyFault : Action) : StatePred =
SmFix (msinit(anyFault))(RevReachStates(anyFaulthixpoint of RRS

AFM’'06 Towards Reusing Formal Proofs in Verification ofifd olerance 08/21/2006

Formal Spec. of Nonmasking- Masking Synthesis

Py -

AFM’'06

/l invariant

StatePred = add_masking(fasing)

/[intermediate program transitions
Action = add_masking,(f,skind

/[faults-span
StatePred = add_masking " (fasing

/[program transitions

Action = add_nonmaskingp’. (Tmasking(fnonmasking_maskiqg pl(fmasking))

Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Verification of Synthesis of Multitolerance

1- Theorems involving fixpoint calculations.

Theorem (1): All computations of a nonmasking- masking
program are infinite:

DeadlockStatdg')(S) = {}

AFM 06 Towards Reusing Formal Proofs in Verification ofid olerance 08/21/2006

Formal Proof of Theorem (1)

{1} DeadlockStates(p’)(S’) = [

Rule? (expand "S' ")
theoreml :

{1} DeadlockStates(p’)
(LgFix (S - ms))
(DeadlockStates (p - mt))))

AFM’06

Towards Reusing Formal Proofs in Verification otifal olerance

Rule? (lemma “theoreml ™)
Applying theoreml

this simplifies to:

theoreml :

{-1} O (X: StatePred][state], g:
DecFunc[state)):

g (LgFix(X)(g)) = O

[1] DeadlockStates (p’)
(Constructinvariant (S - ms, p
—mt)) = [

Rule? (inst-1 “ S - ms”
“DeadlockStates(p’)”)
Instantiating quantified variables,

Q.E.D.
08/21/2006

More Theorems...

2- Theorems involving induction and case analysis.

Lemma (1) : In the presence of faults, no computation prefix of
a honmasking-masking program that starts fromtae st&|,
reaches a state ms:

Hj: (Ue: prefix (p' U fasking 1) G U S
k| k<j:c,OOmg

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

Proof Idea on Satisfying Safety
]

Use induction on

Skolemize

T

[Program transition] [Fault transition]

Trivial Apply the fixpoint theorem

AFM’'06 Towards Reusing Formal Proofs in Verification ofifd olerance 08/21/2006

More Theorems...

3- Theorems involving only application of another theorem.

Theorem (2) : In the presence of faults, no computation
prefix of a failsafe fault-tolerant program thadrss from a
state inS’violates safety:

j: (Ue: prefix (p" U fasking 1) G U S
Ok k<2 (Cr) T 24)

Proof : By applying Lemma (1).

AFM’'06 Towards Reusing Formal Proofs in Verification ofifal olerance 08/21/2006

More Theorems...

4- Theorems involving application of a combination of
other lemmas, theorems, and possibly other things.

Theorem (3) : In the presence of faults, any computation of a
nonmasking-masking program that starts from a state
the state space, reaches the invaisint

Lc (p] fnonmasking-maskir)g : ([j |J >0 :Cj] Sl)

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

Proof Idea

Skolemize
/l —
[Program] [fmaskina [fnonmaskinl;
Trivial Reuse reachability = Reuse one-step
proof of ¢mm recovery to f-span
of masking

masking f-span

AFM’'06 Towards Reusing Formal Proofs in Verification ofifd olerance 08/21/2006

Future Work
« /1

e Developing proof strategies

e Verifying the correctness of other synthesis alfyons that

- Add fault-tolerance to real-time programs
[Bonakdarpour and Kulkarni, SSS’06]

-~ Enhance the level of fault-tolerance
[Kulkarni and Ebnenasir, ICDCS’03]

AFM’'06 Towards Reusing Formal Proofs in Verification ofifd olerance 08/21/2006

Problem Statement

e Soundness. Given,S p, f, 2, If p' is the set of
transitions of fault-tolerant program with invanas.

1. SIS

2. p'Up
3. p'Is fault-tolerant (nonmasking / masking) fr@n

AFM'06 Towards Reusing Formal Proofs in Verification otifd olerance 08/21/2006

