Towards Reusing Formal Proofs in Verification of Fault-Tolerance

Borzoo Bonakdarpour Sandeep S. Kulkarni

Automated Formal Methods (AFM'06)

Motivation

- We need to gain confidence on the correctness of fault-tolerance properties.
- In the literature, the main focus has been on verification of concrete fault-tolerant systems.
- We need more general verifications, so that we are not required to verify individual programs.

Motivation (cont.)

We verify the correctness of algorithms that synthesize fault-tolerant programs ; all synthesized programs will be correct-by-construction.

We use the theorem prover PVS as our verification tool.

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

Outline

- Review of previous results [LOPSTR'04, TPHoLs'04]
 - A formal framework for fault-Tolerance
 - A fixpoint calculation library on finite sets
 - Mechanical verification of automatic addition of fault-tolerance
- Mechanical verification of automatic synthesis of multitolerance by reusing formal proofs [AFM'06]
- Conclusions and future work

Levels of Fault-Tolerance

 Nonmasking: A program is nonmasking faulttolerant, if after occurrence of faults it eventually recovers to its normal behavior.

 Masking: A program is masking fault-tolerant, if after occurrence of faults it eventually recovers to its normal behavior without violating safety.

A Fault-Tolerance Framework in PVS

FT [state : **TYPE**]: **THEORY BEGIN**

ASSUMING

ST_is_finite : ASSUMPTION is_finite_type[state] TR_is_finite : ASSUMPTION is_finite_type[[state, state]] ENDASSUMING

State is a finite type *Transition* is a finite type

Transition:**TYPE** = [state, state]StatePred:**TYPE** = finite_set [state]Action:**TYPE** = finite_set [Transition]Set of transitionsComputation (Z: Action):**TYPE** = {A: sequence[state] | $\forall n: (A_n, A_{n+1}) \in Z)$ }

StateSpace: StatePred = fullset [state] S: StatePred

- p: Action
- f: Action
- Σ_{bt} : Action

The state space invariant of fault-intolerant program program set of faults set of bad transitions

6

The Synthesis Problem

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

Automatic Synthesis of Nonmasking Tolerance

•
$$p' = p \cup$$

{ $(s_0, s_1) \mid s_0 \in T - S \land s_1 \in S$ }

Automatic Synthesis of Masking Tolerance

Step (1): Identifying the set of states and transitions from where safety may be violated by a sequence of fault transitions.

 $\begin{aligned} mt &= \{(s_0, s_1) \mid s_1 \in ms \lor \\ (s_0, s_1) \in \Sigma_{bt} \} \end{aligned}$

Automatic Synthesis of Masking Tolerance (cont.)

Step (2): Identifying and removing deadlock states

08/21/2006

A Fixpoint Theory on Finite Sets

Suppose X is a state predicate and g(X) denotes the set of deadlock states of X:

 $X_{1} = X - g(X)$ $X_{2} = X_{1} - g(X_{1})$ $X_{n} = X_{n-1} - g(X_{n-1}) \text{ where } g(X_{n-1}) = \emptyset$

 $X_{n+1} = X_n$

 $X_n = X_{n-1}$

AFM'06

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

08/21/2006

Largest Fixpoint

DecFunc: **TYPE** = [A : **StatePred** \rightarrow {B: **StatePred** $| B \subseteq A$)}]

Dec (*i* : nat, X : StatePred)(g : DecFunc): RECURSIVE StatePred =

IF i = 0 THEN X ELSE Dec(i-1, X)(g) - g(Dec(i-1, X)(g))ENDIF

MEASURE (λ (x : **nat**, y : **StatePred**): x)

```
LgFix (X : StatePred)(g : DecFunc): StatePred = \{s \mid \forall (k: nat): s \in Dec (k, X)(g))\}
```

Largest Fixpoint and Deadlock States

Theorem [LOPSTR'04]: Further recalculation of fixpoint returns the empty set :

 $g(LgFix(X)(g)) = \emptyset$

DeadlockStates (p: Action)(ds : StatePred): StatePred = $\{s_0 \mid (s_0 \in ds) \land (\forall s_1: (s_1 \in ds) \Rightarrow (s_0, s_1) \notin p)\}$

 S_1 : **StatePred** = LgFix (S - ms)(DeadlockStates(p - mt))

08/21/2006

AFM'06

Automatic Addition of Masking Fault-Tolerance

Let $T_1 = true - ms$

Repeat

- Recalculate S_1 and T_1 such that:
 - S_1 is reachable from all states in T_1 S_1 .
 - T_1 is closed in $p_1 \cup f$.

Until S_1 and T_1 remain unchanged

```
Remove cycles from T_1- S_1
```

Automatic Synthesis of Multitolerance [DSN'04]

- *Multitolerant programs* tolerate different classes of faults and provide different level of fault-tolerance to each class.
- If faults from different classes occur, the multitolerant program provides the minimum level of fault-tolerance:

Level of FT	Nonmasking	Masking
Nonmasking	Nonmasking	Nonmasking
Masking	Nonmasking	Masking

Revisiting the Synthesis Problem

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

Generalizing Formal Specification

add_multift [state : TYPE]: THEORY

BEGIN IMPORTING add_nonmasking[state] IMPORTING add_masking[state]

 $f_{nonmasking}$: $f_{masking}$: $f_{nonmasking-masking}$: Action Action Action = $f_{nonmasking} \cup f_{masking}$

msInit(anyFault : Action) : StatePred = $\left[a + \frac{1}{2}a + \frac{1}{2$

 $\{s_0 \mid \exists s_1 : ((s_0, s_1) \in anyFault \land (s_0, s_1) \in \Sigma_{bt})\}$ // faults directly violate safety

RevReachStates(anyFault : Action)(rs : StatePred) : StatePred = // backward reachability $\{s_0 | \exists s_1 : (s_1 \in rs \land (s_0, s_1) \in anyFault \land s_0 \notin rs)\}$

ms(anyFault : Action) : StatePred =
 SmFix (msInit(anyFault))(RevReachStates(anyFault)) // Fixpoint of RRS

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

Formal Spec. of Nonmasking-Masking Synthesis

// invariant

S': StatePred = add_masking . $S_1(f_{masking})$

// intermediate program transitions

 p_1 : Action = add_masking . $p_1(f_{masking})$

 $T_1: \qquad \text{StatePred} = \text{add}_{\text{masking}} \cdot T'(f_{\text{masking}})$

 $p': \quad \text{Action} = \text{add_nonmasking} \cdot p' (T_{masking} (f_{nonmasking_masking}), p_1(f_{masking}))$

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

08/21/2006

AFM'06

Verification of Synthesis of Multitolerance

1- Theorems involving fixpoint calculations.

Theorem (1): All computations of a nonmasking- masking program are infinite:

 $DeadlockStates(p')(S') = \{ \}$

Formal Proof of Theorem (1)

```
-----
```

{1} DeadlockStates(p')(S') = \emptyset

```
Rule? (expand "S' ") theorem1 :
```

{1} DeadlockStates(p')
(LgFix (S - ms))
 (DeadlockStates (p - mt))))

Rule? (lemma "theorem1") Applying theorem1 this simplifies to: theorem1 :

{-1} \forall (X: StatePred[state], g: DecFunc[state]): g (LgFix(X)(g)) = ∅

[1] DeadlockStates (p') (ConstructInvariant (S - ms, p – mt)) = \emptyset

Rule? (inst -1 " S - ms" "DeadlockStates(p')") Instantiating quantified variables, Q.E.D.

20

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

More Theorems...

AFM'06

2- Theorems involving induction and case analysis.

Lemma (1) : In the presence of faults, no computation prefix of a nonmasking-masking program that starts from a state in *S'*, reaches a state in *ms*:

 $\forall j: (\forall c: prefix (p' \cup f_{masking}, j) \mid c_0 \in S': \\ \forall k \mid k < j: c_k \notin ms)$

Proof Idea on Satisfying Safety

Towards Reusing Formal Proofs in Verification of Fault-Tolerance

08/21/2006

More Theorems...

3- Theorems involving only application of another theorem.

Theorem (2): In the presence of faults, no computation prefix of a failsafe fault-tolerant program that starts from a state in *S*′violates safety:

$$\begin{aligned} \forall j: (\forall c: prefix \ (p' \cup f_{masking}, \ j) \mid c_0 \in S': \\ \forall k \mid k < j: \ (c_k, \ c_{k+1}) \notin \Sigma_{bt}) \end{aligned}$$

Proof: By applying Lemma (1).

AFM'06

More Theorems...

4- Theorems involving application of a combination of other lemmas, theorems, and possibly other things.

Theorem (3) : In the presence of faults, any computation of a nonmasking-masking program that starts from a state in the state space, reaches the invariant S':

 $\forall c \ (p \cup f_{nonmasking-masking}) \ : (\exists j \mid j > 0 : c_j \in S_1).$

Proof Idea

Future Work

- Developing proof strategies
- Verifying the correctness of other synthesis algorithms that:
 - Add fault-tolerance to real-time programs

[Bonakdarpour and Kulkarni, SSS'06]

– Enhance the level of fault-tolerance

[Kulkarni and Ebnenasir, ICDCS'03]

Problem Statement

- **Soundness**: Given, *S*, *p*, *f*, Σ_{bt} , If *p'* is the set of transitions of fault-tolerant program with invariant *S'*:
 - 1. $S' \subseteq S$
 - 2. $p' \subseteq p$
 - 3. p' is fault-tolerant (nonmasking / masking) from S'