
Towards Reusing Formal Proofs in
Verification of Fault-Tolerance

Borzoo Bonakdarpour

Sandeep S. Kulkarni

Automated Formal Methods
(AFM’06)

Towards Reusing Formal Proofs in Verification of Fault-Tolerance2 08/21/2006AFM’06

Motivation

� We need to gain confidence on the correctness of fault-
tolerance properties.

� In the literature, the main focus has been on verification
of concrete fault-tolerant systems.

� We need more general verifications, so that we are not
required to verify individual programs.

Towards Reusing Formal Proofs in Verification of Fault-Tolerance3 08/21/2006AFM’06

Motivation (cont.)

We verify the correctness of algorithms that synthesize
fault-tolerant programs ; all synthesized programs will
be correct-by-construction.

We use the theorem prover PVS

as our verification tool.

Towards Reusing Formal Proofs in Verification of Fault-Tolerance4 08/21/2006AFM’06

Outline

� Review of previous results [LOPSTR’04, TPHoLs’04]

– A formal framework for fault-Tolerance

– A fixpoint calculation library on finite sets

– Mechanical verification of automatic addition of fault-tolerance

� Mechanical verification of automatic synthesis of
multitolerance by reusing formal proofs [AFM’06]

� Conclusions and future work

Towards Reusing Formal Proofs in Verification of Fault-Tolerance5 08/21/2006AFM’06

Levels of Fault-Tolerance

– Nonmasking: A program is nonmasking fault-
tolerant, if after occurrence of faults it eventually
recovers to its normal behavior.

– Masking: A program is masking fault-tolerant, if after
occurrence of faults it eventually recovers to its normal
behavior without violating safety.

Towards Reusing Formal Proofs in Verification of Fault-Tolerance6 08/21/2006AFM’06

A Fault-Tolerance Framework in PVS

FT [state : TYPE]: THEORY
BEGIN

ASSUMING
ST_is_finite : ASSUMPTION is_finite_type[state] Stateis a finite type
TR_is_finite : ASSUMPTION is_finite_type[[state, state]] Transitionis a finite type

ENDASSUMING

Transition: TYPE = [state, state]
StatePred: TYPE = finite_set [state]
Action: TYPE = finite_set [Transition] set of transitions
Computation (Z: Action): TYPE = {A: sequence[state] | ∀n: (An, An+1) ∈ Z)}

StateSpace: StatePred = fullset [state] The state space
S: StatePred invariant of fault-intolerant program
p: Action program
f: Action set of faults
Σbt: Action set of bad transitions

Towards Reusing Formal Proofs in Verification of Fault-Tolerance7 08/21/2006AFM’06

The Synthesis Problem

Synthesis Algorithm

Program p

Invariant S

Specification Σbt

Faults f

A desired level of fault-tolerance

Program p′

Invariant S′

Towards Reusing Formal Proofs in Verification of Fault-Tolerance8 08/21/2006AFM’06

Automatic Synthesis of Nonmasking Tolerance

Sp

• S′ = S

• p′ = p ∪

{(s0 , s1) | s0 ∈ T− S∧ s1 ∈ S}

S

T

Towards Reusing Formal Proofs in Verification of Fault-Tolerance9 08/21/2006AFM’06

Automatic Synthesis of Masking Tolerance

Sp

msInit

Step (1): Identifying
the set of states and
transitions from where
safety may be violated
by a sequence of fault
transitions.

ms

mt = {(s0 , s1) | s1 ∈ ms∨
(s0 , s1) ∈ Σbt}

Σbt

Violation of
safety

s0

s4

s3 s1

s2

Towards Reusing Formal Proofs in Verification of Fault-Tolerance10 08/21/2006AFM’06

Automatic Synthesis of Masking Tolerance (cont.)

S-ms

Sp

S’

Step (2): Identifying
and removing
deadlock states

p

p

s2

s1

p
××××s0

Towards Reusing Formal Proofs in Verification of Fault-Tolerance11 08/21/2006AFM’06

A Fixpoint Theory on Finite Sets

Suppose X is a state predicate and g(X) denotes the
set of deadlock states of X:

X1 = X – g (X)

X2 = X1 – g (X1)

Xn = Xn-1 – g (Xn-1) where g (Xn-1) = ∅

Xn = Xn-1

Xn+1 = Xn

Towards Reusing Formal Proofs in Verification of Fault-Tolerance12 08/21/2006AFM’06

Largest Fixpoint

DecFunc: TYPE = [A : StatePred → {B: StatePred | B ⊆ A)}]

Dec (i : nat, X : StatePred)(g : DecFunc): RECURSIVE StatePred =

IF i = 0 THEN
X

ELSE
Dec(i− 1, X)(g) − g(Dec(i − 1, X)(g))

ENDIF

MEASURE (λλλλ (x : nat, y : StatePred): x)

LgFix (X : StatePred)(g : DecFunc): StatePred =
{ s | ∀ (k: nat): s∈ Dec (k, X)(g))}

Towards Reusing Formal Proofs in Verification of Fault-Tolerance13 08/21/2006AFM’06

Largest Fixpoint and Deadlock States

Theorem [LOPSTR’04]: Further recalculation of fixpoint
returns the empty set :

g (LgFix (X)(g)) = ∅

DeadlockStates(p: Action)(ds: StatePred): StatePred =
{ s0 | (s0 ∈ ds) ∧ (∀ s1: (s1∈ ds) ⇒ (s0, s1) ∉ p)}

S1: StatePred = LgFix (S- ms)(DeadlockStates(p - mt))

Towards Reusing Formal Proofs in Verification of Fault-Tolerance14 08/21/2006AFM’06

Automatic Addition of Masking Fault-Tolerance

Let T1 = true– ms

Repeat
– Recalculate S1 and T1 such that:

� S1 is reachable from all states in T1 - S1.

� T1 is closed in p1 ∪ f .

Until S1 and T1 remain unchanged

Remove cycles from T1- S1

Towards Reusing Formal Proofs in Verification of Fault-Tolerance15 08/21/2006AFM’06

Automatic Synthesis of Multitolerance [DSN’04]

� Multitolerant programs tolerate different classes of faults and provide
different level of fault-tolerance to each class.

� If faults from different classes occur, the multitolerant program
provides the minimum level of fault-tolerance:

MaskingNonmaskingMasking

NonmaskingNonmaskingNonmasking

MaskingNonmaskingLevel of FT

Towards Reusing Formal Proofs in Verification of Fault-Tolerance16 08/21/2006AFM’06

Revisiting the Synthesis Problem

Synthesis Algorithm

Program p

Invariant S

Specification Σbt

A desired level of multitolerance

Program p′

Invariant S′fnonmasking

fmasking

Towards Reusing Formal Proofs in Verification of Fault-Tolerance17 08/21/2006AFM’06

Generalizing Formal Specification

add_multift [state : TYPE]: THEORY

BEGIN
IMPORTING add_nonmasking[state]
IMPORTING add_masking[state]

fnonmasking: Action
fmasking: Action
fnonmasking-masking: Action = fnonmasking∪ fmasking

msInit(anyFault : Action) : StatePred =
{ s0 | ∃s1 : ((s0, s1) ∈ anyFault∧ (s0, s1) ∈ Σbt)} // faults directly violate safety

RevReachStates(anyFault : Action)(rs : StatePred) : StatePred = // backward reachability
{ s0 | ∃s1 : (s1 ∈ rs ∧ (s0, s1) ∈ anyFault∧ s0 ∉ rs)}

ms(anyFault : Action) : StatePred =
SmFix (msInit(anyFault))(RevReachStates(anyFault)) // Fixpoint of RRS

Towards Reusing Formal Proofs in Verification of Fault-Tolerance18 08/21/2006AFM’06

Formal Spec. of Nonmasking- Masking Synthesis

// invariant

S ′ : StatePred = add_masking . S1(fmasking)

// intermediate program transitions

p1 : Action = add_masking . p1(fmasking)

// faults-span

T1 : StatePred = add_masking . T ′ (fmasking)

// program transitions

p′ : Action = add_nonmasking . p′ (Tmasking(fnonmasking_masking), p1(fmasking))

Towards Reusing Formal Proofs in Verification of Fault-Tolerance19 08/21/2006AFM’06

Verification of Synthesis of Multitolerance

1- Theorems involving fixpoint calculations.

Theorem (1): All computations of a nonmasking- masking
program are infinite:

DeadlockStates(p′)(S ′) = {}

Towards Reusing Formal Proofs in Verification of Fault-Tolerance20 08/21/2006AFM’06

Formal Proof of Theorem (1)

|-------
{1} DeadlockStates(p’)(S’) = ∅

Rule? (expand "S’ ")
theorem1 :

|-------

{1} DeadlockStates(p’)
(LgFix (S - ms))

(DeadlockStates (p - mt))))

Rule? (lemma “ theorem1 ")
Applying theorem1
this simplifies to:
theorem1 :

{-1} ∀ (X: StatePred[state], g:
DecFunc[state]):

g (LgFix(X)(g)) = ∅
|-------

[1] DeadlockStates (p’)
(ConstructInvariant (S - ms, p

– mt)) = ∅

Rule? (inst -1 “ S - ms”
“ DeadlockStates(p’)”)

Instantiating quantified variables,
Q.E.D.

Towards Reusing Formal Proofs in Verification of Fault-Tolerance21 08/21/2006AFM’06

More Theorems…

2- Theorems involving induction and case analysis.

Lemma (1) : In the presence of faults, no computation prefix of
a nonmasking-masking program that starts from a state in S',
reaches a state in ms:

∀j: (∀c: prefix (p' ∪ fmasking, j) | c0 ∈ S ' :

∀k | k < j: ck ∉ ms)

Towards Reusing Formal Proofs in Verification of Fault-Tolerance22 08/21/2006AFM’06

Proof Idea on Satisfying Safety

Use induction on j

Skolemize

[Program transition] [Fault transition]

Trivial Apply the fixpoint theorem

Towards Reusing Formal Proofs in Verification of Fault-Tolerance23 08/21/2006AFM’06

More Theorems…

3- Theorems involving only application of another theorem.

Theorem (2) : In the presence of faults, no computation
prefix of a failsafe fault-tolerant program that starts from a
state in S′ violates safety:

∀j: (∀c: prefix (p' ∪ fmasking, j) | c0 ∈ S' :
∀k | k < j: (ck , ck+1) ∉ Σbt)

Proof : By applying Lemma (1).

Towards Reusing Formal Proofs in Verification of Fault-Tolerance24 08/21/2006AFM’06

More Theorems…

4- Theorems involving application of a combination of
other lemmas, theorems, and possibly other things.

Theorem (3) : In the presence of faults, any computation of a
nonmasking-masking program that starts from a state in
the state space, reaches the invariant S′ :

∀c (p ∪ fnonmasking-masking) : (∃j | j > 0 : cj ∈ S1).

Towards Reusing Formal Proofs in Verification of Fault-Tolerance25 08/21/2006AFM’06

Proof Idea

Skolemize

[Program] [fmasking] [fnonmasking]

Reuse reachability
proof of

masking f-span

Reuse one-step
recovery to f-span

of masking

Trivial

Towards Reusing Formal Proofs in Verification of Fault-Tolerance26 08/21/2006AFM’06

Future Work

� Developing proof strategies

� Verifying the correctness of other synthesis algorithms that:

– Add fault-tolerance to real-time programs

[Bonakdarpour and Kulkarni, SSS’06]

– Enhance the level of fault-tolerance
[Kulkarni and Ebnenasir, ICDCS’03]

Towards Reusing Formal Proofs in Verification of Fault-Tolerance27 08/21/2006AFM’06

Problem Statement

� Soundness: Given, S, p, f, Σbt, If p′ is the set of
transitions of fault-tolerant program with invariant S ′:
1. S′ ⊆ S

2. p ′ ⊆ p

3. p′ is fault-tolerant (nonmasking / masking) from S′

