Specification and Proof
of the Mondex Electronic Purse

Chris George! and Anne E. Haxthausen?

! International Institute for Software Technology,
United Nations University, Macao
2 Informatics and Mathematical Modelling
Technical University of Denmark, Lyngby, Denmark

Abstract. This paper describes how the communication protocol of
Mondex electronic purses can be specified and verified wrt. desired se-
curity properties. The specification is developed by stepwise refinement
using the RAISE formal specification language, RSL, and the proofs are
made by translation to PVS and SAL.

Keywords: Formal methods, RAISE, PVS, SAL, verification, Mondex

1 Introduction

1.1 The problem and the protocol

Mondex [Inc,IE97] is a financial system that utilizes smart cards as electronic
purses. Each card stores financial value (equivalent to cash) as electronic infor-
mation on a microchip and provides operations for making financial transactions
with other cards via a communication device. The system is distributed without
any central controller.

The protocol for transferring an amount (value), v, from one purse, P1, to
another purse, P2, includes the following steps:

1. P2 sends a request about transferring v from PI to P2
2. P1 receives the request and sends the amount v to P2
3. P2 receives the amount v and sends an acknowledgement to P1

It should be noted that the protocol can be stopped at any point by either purse
aborting the transaction, such as by a card losing power. If e.g. P2 aborts after
P1 has sent the amount but before P2 has received it, it must be logged that
the amount is “lost”; it may be lost to the purse balances but not to the system
as a whole.

1.2 Past and ongoing work

It is rather important that such a financial system does not contain bugs, and
therefore the NatWest Team that had the development task asked Logica to
verify this using formal models.

The key problems were:

1. to specify the protocol in detail

2. to prove that each operation satisfies two conditions:
(a) the value in circulation in the system will not increase
(b) all value is accounted in the system

Originally [SCWO00], the Mondex smart card problem was specified and re-
fined in the Z [Spi92] formal specification language, and proved correct by hand.
This resulted in an assurance at ITSEC [ITS] level E6, ITSEC’s highest granted
security-level classification which is equivalent to Common Criteria level EALT.

Currently a number of research groups are working on the same problem in
parallel using different formalisms, methods and tools. The purpose is to see
what the current state of the art is in mechanising specification and proof.

In this paper we report on how we have done that using the RAISE method.

1.3 RAISE background

The RAISE (“Rigorous Approach to Industrial Software”) method [RAI95] is
based on stepwise refinement using the invent and verify paradigm. In each
step a new specification is constructed and proved to be a refinement of the
specification of the previous step.

The specifications are formulated in the RAISE specification language (RSL)
[RAI92]. RSL is a formal, wide-spectrum specification language that enables the
formulation of modular specifications which are algebraic or model-oriented, ap-
plicative or imperative, and sequential or concurrent. A basic RSL specification
is called a class expression and consists of declarations of types, values, variables,
channels, and axioms. Specifications may also be built from other specifications
by renaming declared entities, hiding declared entities, or adding more declara-
tions. Moreover, specifications may be parameterized.

With the method and language there is a suite of tools supporting the con-
struction, checking and verification of specifications and development relations,
and for translating specifications in certain subsets of RSL into several other
languages including PVS and SAL.

1.4 Paper survey

First, in section 2, we describe how a specification of the Mondex communication
protocol and proof obligations has been stepwise developed. Then, in sections 3—
4, we explain how the proof obligations have been proved by translation to
PVS [ORS92] and SAL [dMOS03], respectively. Finally, in section 5, we draw
some conclusions.

2 RSL specification of Mondex

In this section first we describe the original Z approach to specification of the
Mondex problem, as this specification served as inspiration for our work. Then
we describe our approach using RAISE.

2.1 The Z approach

The Z specification [SCWO00] of Mondex electronic purses consists of three models
at different levels of abstraction:

1. An abstract model that describes the global state (world of purses) and op-
erations on this for atomic value transfer between purses.

2. A between model that describes (1) the state of a single purse and the single
purse operations, and, (2) the global state as a collection of purses, an ether
of messages and an archive of logs, and global world operations defined by
promoting the single purse operations.

3. A concrete model that is similar to the between model, but with no state
invariants. Loss of messages is also introduced.

The abstract model describes the functional requirements (independent of any
protocol) for value transfer between purses, while the concrete model describes
the actual Mondex communication protocol. The between model was introduced
for very technical reasons to ease the proof that the concrete model refines the
abstract one.

The security properties are expressed in terms of the abstract model and
proved to be correct already at that level. It is proved that the between model
refines the abstract model and the concrete model refines the between model.
Hence, it is proved that the concrete model satisfies the security properties.

2.2 The RAISE approach

First we considered staying very close to the structure of the Z approach. Techni-
cally this would have been possible, but we decided to using an approach more in
keeping with the RAISE method and the RAISE notion of refinement!. However
the details we describe follow closely the details described in Z.

We also specified the system at three levels as described in the subsections
below, but there is not a one to one correspondence between the three Z levels
and the three RAISE levels.

One of the main differences is that different levels in Z use different types to
represent the global state (AbWorld and ConWorld), while in RAISE we use the
same type World at all levels of the specification. In the abstract RAISE model
the type is abstract (a sort with some associated observer functions), while in
the concrete one it is given an explicit representation. In the intermediate level
it is still abstract, but additional observers are introduced.

Another difference is that we do not have one set of atomic operations at
the abstract level and another set of operations (the protocol operations) at the

! Refinement in Z is relational: A model B refines a model A if any B state transition
simulates an A state transition. Simulation is defined in terms of a retrieve relation
between the A and B states: seen through this retrieve relation the states reachable
in B should be a subset of those reachable in A. In RAISE, refinement basically is
model inclusion (or theory extension) and not a simulation subrelation.

intermediate and concrete levels which then should be related to each other.
Rather from the very beginning our goal is to define the protocol operations. At
the abstract level, we just define what it means for an operation to be correct. At
the intermediate level we axiomatically specify the behaviour of the operations
and at the final, concrete level, the operations are explicitly defined. Operations
corresponding to the atomic Z operations are defined at the intermediate level
as compositions of the protocol operations. In the Z work we have not found a
corresponding demonstration that a complete transfer is possible in terms of the
protocol operations.

Level 0 The initial specification WORLDO specifies the global state as a sort
World with three fundamental observers that give the total sum of values stored
in purses, the total value in transit between purses, and the total value logged
as lost, respectively:

type World

value /+ World observers */
inPurses : World — Nat,
inTransit : World — Nat,
lost : World — Nat

The two desired relations nolncreasedCirculation (the sum of inPurses and in-
Transit does not increase) and allValueAccounted (the sum of all three is con-
stant) between pre and post Worlds of operations are explicitly defined in terms
of these fundamental observers.

Types Op and Pre for state changing operations (taking a purse name and a
message as parameters) and their preconditions (protocol guards) are introduced,
but no concrete operations are introduced at this level.

type
Op = Name x Message x World = World,
Pre = Name x Message x World — Bool

We just define what it means for an operation to be correct:

value
isCorrect : Pre x Op — Bool
isCorrect(p, op) =
(V n : Name, m : Message, w, wl : World «
p(n, m, w) =
op(n, m, w) = wl =
nolncreasedCirculation(w, wl) A allValueAccounted(w, wl)),

Finally four predicates for classifying operations according to how they change
the observable values are defined. An operation that (satisfies) isTransferLeft
reduces inPurses and increases inTransit or lost by the same amount; one that

isTransferRight reduces inTransit and increases inPurses by the same amount;
one that isNo_op leaves the three observers unchanged; and one that isAbort
reduces inTransit and increases lost by the same amount (which may in fact be
zero: whether an abort actually causes a definite increase in lost depends on the
point in the protocol when the abort of a purse happens).

A theory, THEORYO, asserts that the four classes of operation satisfy is-
Correct. Our strategy for development is to show that each of the 11 concrete
operations, when viewed abstractly in terms of the three fundamental observers,
satisfy one of isTransferLeft, isTransferRight, isNo_op, isAbort, and hence that
they all satisfy isCorrect.

Level 1 The next level consists of two parts: PURSE1 and WORLDI1.
PURSEL introduces a purse state with names, balances, pay details, statuses:

type PurseBase, Purse = {| p : PurseBase » ... |}

value /x Purse observers */
balance : PurseBase — Nat,
pdAuth : PurseBase — PayDetails,
status : PurseBase — Status,
name : PurseBase — Name

Purse state changing operations receiving and sending a message are axiomati-
cally specified, and their preconditions explicitly defined. Here we show it for an
operation req that formalizes the request step in the communication protocol:

value /x Purse operations and guards */
req : Message x Purse = Purse x Message,

canReq : Message x Purse — Bool
canReq(m, p) = ...,

axiom /x observer generator axioms */
[balance_req]
YV m : Message, p : Purse ¢
canReq(m, p) =
balance(req(m, p)) = balance(p) — valu(pdAuth(p)),

The term valu(pdAuth(p)) is the amount of value requested to be transferred.
The first axiom states that the balance of the purse is decreased by that amount.
In WORLD1 new World observers are introduced:

value
purses : World — PursesMap,
toLogs : World — PayDetails-set,
fromLogs : World — PayDetails-set,

ether : World — Message-set,
visible : World — Message-set

and the observers from WORLDO are explicitly defined in terms of these. An
axiom isWorldAxiom specifies a state invariant (required relations between the
observers). For example, in any World, visible is a subset of ether, reflecting that
messages may be lost.

The Purse operations are promoted to World operations:

value /+x World operations and guards x/
req : Op,
canReq : Pre,

axiom /* observer generator axioms */
[purses_req |
V 1n : Name, m : Message, w : World
canReq(n, m, w) = purses(req(n, m, w)) = ...

A theory, THEORY1, asserts that each of the 11 World operations satisfies one of
the four classification conditions (introduced in WORLDO0) and that WORLD1
implements WORLDO and so inherits all its properties and hence its theories.

Level 2 At the final level, in WORLD2 and PURSE2, all types and operations
are explicitly defined apart from a few things that are intentionally underspeci-
fied. We have the same degree of concreteness as in the concrete Z model.

A theory, THEORY?2, asserts that WORLD2 implements WORLD1 and so
inherits all its properties and hence its theories.

3 Mondex in PVS

The Mondex RSL specification was translated to PVS using the RSL to PVS
translator [DGO02]. Each of the three levels was translated together with the
associated theory.

3.1 Strategy

The aim of the Mondex project is to see what can be done automatically. We
could probably have developed automatic strategies to deal with all the proofs
involved here, but that, we feel, is not really the purpose: rather we are interested
in how much can tools deal with proofs guided by software engineers with some
experience and some heuristics to guide them. Scripted proof strategies should
only be employed if they are fairly general, with guidelines about when to use
them, or (as in this case) there are a number of very similar proofs and it is
fairly simple to develop a useful strategy that is particular to the problem.

3.2 Proof obligations

A number of different kinds of proof obligation were generated:

Existence TCCs We had very few of these, and they were easily discharged.

Subtype TCCs There were many of these, because there are a number of sub-
types in the RSL specification and also a lot of functions with preconditions,
which become subtypes in PVS. A large collection of proofs in this category
appears at level 2, where we have to prove that isWorld is invariant for each
of the 11 operations.

Finiteness There are a number of sets defined by comprehension which need
to be finite because we sum over them.

Lemmas Many of the statements in the THEORY modules are lemmas to be
used later, in particular expressing quantities that will be needed in the
proofs of later assertions.

Refinement In THEORY1 we find the assertion “WORLD1 < WORLDO”.
In the translation to PVS such refinement relations are expanded into a
collection of predicates sufficient to imply refinement. In fact, WORLDL1 is
essentially an extension of WORLDO, and the relation reduces immediately
to true. In THEORY?2 the corresponding relation expands into 113 lemmas
to be proved, arising from the axioms in WORLD1 and PURSE1 that now
have to be proved from the concrete definitions in WORLD2 and PURSE2.
Most of them are trivial to prove.

3.3 The argument for correctness

We need to be clear about exactly what we have proved. We defined the basic
relations nolncreasedCirculation and allValueAccounted in WORLDO, and de-
fined a function isCorrect that returns true for an operation (state transformer
in this case) that maintains these two relations when its precondition is true.
This reduces the problem to showing for each operation and associated precon-
dition that we define, that they satisfy isCorrect. But we need to be aware that
isCorrect is defined in WORLDO, and we need proofs for the concrete opera-
tions defined in WORLD2. We will take the operation req as an example. The
argument proceeds as follows:

1. We assert in THEORYO0 and prove that an operation satisfying isTransferLeft
satisfies isCorrect.

2. We axiomatise req in WORLDI1, and assert in THEORY1 and prove that
req satisfies isTransferLeft. Now we appeal to a meta-theorem for refinement
in RAISE:

S0P, S1 <S50
S1FP

(1)

which states that if predicate P is proved for specification S0, and specifi-
cation SI refines SO, then P is proved for S1. We can appeal to this rule to

show that req must satisfy isCorrect at level 1. (We did in fact assert and
prove this separately at level 1, but theorem (1) shows that such an assertion
and proof is unnecessary.)
Theorem (1) follows from the definition of refinement in RAISE, which says
that SI < SO iff (a) the signature of SI includes that of SO (from which it
follows that if P is well-formed in the context SO then it will be well-formed
in the context S1) and (b) all the properties of SO are true in SI. It follows
that if P can be proved from the properties of SO then it can be proved from
the properties of S1.

3. We define req explicitly in WORLD2 and prove that WORLD2 < WORLD1.
The final result that req must satisfy isCorrect at level 2 follows by another
appeal to theorem (1).

3.4 The proofs

The following (groups of) proofs were the most difficult.

1. At level 2, the proofs that the 11 operations preserve isWorld. isWorld con-

tains 14 conjuncts, and this was a very substantial proof effort, and the one
for which it was worth producing a tactic to assist. While, obviously, each
of the operations changes the state in different ways, so requiring its own
proof, the overall structure of the 11 proofs was similar. We wrote a tactic
to do most of the work, basically by doing one proof by hand and using its
proof, structured with then and split, as the tactic, then trying it on the
next one, stepping through the tactic and improving it and generalising it
as necessary. Then we just ran it on the rest and completed the proofs by
hand. The basic tactic completed 81% of the proof branches — but this still
left 70 proofs to be done!
The branches of the tactic end with assert, flatten, assert, and assert.
It was tempting to use something more powerful than assert, but the size
of the specification meant that grind could generate a very large number
of cases (we once generated 1580) and even grind :if-match nil could
generate 70. Some might have generated more: we often lost patience and
interrupted a seemingly endless proof.

2. The proof that the invariant isWorldAxiom at level 1 was implied by the
invariant isWorld at level 2 was quite substantial: the two invariants have
very different structures, that at level 1 being designed to help the proofs
of the correctness of the operations, and that at level 2 being designed to
support the proofs that the operations are correctly implemented, which
depends on having a suitable tightly restricted state space. This proof was
quite large, but not difficult.

3. The proofs of the finiteness of a number of sets needed care. Proving finiteness
from first principles (by the existence of a bijection to a finite range of
integers) is almost never a good idea, and existing useful theorems need to
be found (or created). For example, tolnEpv (used to calculate inTransit) of
a World w is defined by the expression

{P.pdAuth(purses(w)(T.to(pd))) | pd : T.PayDetails ¢
T.to(pd) € dom purses(w) A P.status(purses(w)(T.to(pd))) = T.epv}

and it is easy to see that this will be a subset of

{P.pdAuth(purses(w)(n)) | n : Name * n € dom purses(w)}

which is the image of a function (A n : Name ¢ P.pdAuth(purses(w)(n)))
applied to the set dom purses(w), which is finite by definition. The necessary
theories (a subset of a finite set is finite, and the functional image of a finite
set is finite) are in the PVS prelude.

More difficult was proving that logs are finite. fromLogs, for example, which
is used to calculate inTransit and lost, is a subset of the pay details found
in purse logs or the archive. The archive is stored as a finite map from purse
name to finite sets of pay details, and the purse logs effectively have the same
structure. So we had to prove that mapping the set union operator through a
finite collection of finite sets gives a finite set. We did this by defining such a
structure in RSL — a parameterised scheme MAPUNION defining the map
type, and a function mapunion, defined by a comprehension, to generate the
set. This was asserted to have a finite result, and so generated the condition
as a TCC. The TCC was proved by complete set induction (included in the
RSL prelude). Then the finiteness of fromLogs, for example, is proved by
showing it is a subset of the union of two instances of mapunion: finiteness
of the union of two finite sets is included in the PVS prelude.

Importance of replay We produced some 11 versions of the specification,
doing some proof for all of them. This amount of experimentation would have
been impossible without the ability to replay proofs from a previous version,
either blindly, just to see how much was left, or more carefully stepping through
the proof and adjusting it as necessary. It would be impossible, we think, to
complete an exercise of this size without this ability.

Some statistics The RSL specifications and theories for the three levels is 2237
lines (in pretty-printed form; there are very few comments). These translated to
4007 lines of PVS (not pretty-printed — the pretty printer in version 3.1 seems
to be broken). There are 7 proofs at level 0, 120 at level 1, and 242 at level 2:
369 in total. The proof scripts for these total 55009 lines (measured from the
.prf files, a large proportion of which is dependency information).

4 Mondex in SAL

We are currently developing a translator from RSL to SAL, and applied this
translator to the concrete (level 2) Mondex specification.

4.1 Purpose of SAL version

One might ask why we bothered with a SAL version since it must be finite with
a bounded size, and we already have a formal proof of an unbounded version.
There are several reasons:

Model checking is much easier than proof, and so much more available to
software engineers.

Model checking can be used to check things before a great deal of effort
is invested in proving them. For example, we wasted a lot of time on one
version with an appealing clause in the invariant which turned out not to be
true. We used it on the proofs of many operations before we stumbled on the
operation for which it was not invariant. Model checking at the beginning
would almost certainly have exposed the problem and saved a lot of work.
The properties we are trying to prove are safety properties. It is good also to
demonstrate some liveness properties, for example that a transfer of money
between purses can occur. We did this by starting the model with one purse
empty, the other not, and asserting that the empty purse remains forever
empty. The model checker generates a counter-example to the (deliberately
invalid) assertion, showing how a transfer can be made.

We will see below in section 4.3 that we can use model checking to check for
violations of subtype conditions and preconditions, again avoiding possible
wasted effort in trying to prove things that are false.

4.2 Simplifications

We made a number of simplifications in order to reduce the size of the state
space to something SAL can handle:

two purses

money in the range 0..3 only

transfers are always of one unit of money (so that the amount does not need
to be included in messages)

all the operations and messages concerned with archiving logs are removed
(as we think these operations could be model checked separately)

the possible loss of messages is not modelled (to reduce possible changes to
the ether)

the technique inherited from the Z specification of including all the startTo
and startFrom messages in the ether is replaced by the (equivalent) technique
of including none of them. The nil message is also removed: it serves no
purpose apart from allowing all operations to have the same signature.
sequence numbers (used in the concrete version to ensure uniqueness of mes-
sages, and modelled as natural numbers) are the range 0..3.

We also made some changes to split the state into smaller components. Such

modifications do not reduce the size of the state, but they make the specification
more accessible to the optimizations used by SAL:

— The ether containing a set of three possible message types is replaced by
three sets each containing the contents of one message type.
— The logs are separated from the purses.

Reducing the range of sequence numbers reduces the number of “runs” of the
protocol. We could “prove” with this model that a purse with a balance of four
would never become empty! (In general, if the sequence numbers are restricted
to 0..n then at most n transfers can take place.)

At the time of writing we are able to prove that:

— All money is accounted.
— The amount of money in circulation does not increase.
isWorld, isWorldAxiom and isPurse are state invariants.
— Liveness in the sense that

e An empty purse can become non-empty.

e A non-empty purse can become empty.

e Money can be lost.

For all of the above assertions the SAL process grows to a maximum memory
usage of between 80MB and 260MB.

Modifying the specification and the assertions to make SAL succeed in check-
ing them we:

— Split up some data types into a number of disjoint subtypes and reformulated
some assertions as a number of assertions each over one of the subtypes. For
example, the type we use to represent pay-details was split up into 4 disjoint
subtypes and assertions modified accordingly.

— Introduced extra state variables, and so shifted computation from assertions
to transitions of the transition system, making the results readily available
for lookup in the state. For example, two state components hold the total
money in circulation in the previous state as well as the money in circulation
in the current state, allowing for a simple formulation of the assertion that
money in circulation does not increase.

— Injectively mapped pay-details to a range of natural numbers, and used this
as the domain of the predicates representing sets of pay-details.

4.3 Checking RSL confidence conditions

Confidence conditions are conditions that a specification must satisfy if unin-
tended use of RSL constructs are to be avoided. The main ones in applicative
specifications are satisfaction of preconditions and “subtype correctness” - con-
stants should be in subtypes, and arguments of functions and their results should
be in subtypes. Here the term “functions” includes both user-defined functions
and operators and the built-in ones. So detecting confidence conditions includes,
for example, division by zero. SAL and PVS do not support preconditions, but
they can be translated into subtypes (since SAL and PVS support the notion of
dependent type). However, subtype checks are not performed by SAL.

The translator from RSL to SAL generates a separate set of SAL files which
include confidence condition (CC) checking, and replaces the user-defined LTL
assertions with a single one that says no “NaV” (“Not a Value”) occurs in any
of the state variables. The term “NaV”is inspired by the IEEE’s floating-point
standard (IEEE 754) which involves the use of “NaN”, “Not a Number”, for
such things as the result of under- or overflow, or attempting to calculate the
square root of a negative number. A NaV is generated whenever a confidence
condition is violated, and all functions and operators in this version are strict:
if a NaV is generated in a function it is returned as the result. This is done by
“lifting” all types into SAL DATATYPES, so that for any defined type T there is
also defined a lifted type:

T_cc: TYPE = DATATYPE
T_cc(T_val: T),
T_nav(T_nav_val: Not_a_value_type)

The type Not_a_value_type is generated by the translator as an enumera-
tion of identifiers which indicate where the confidence condition violation was
detected, as we see from the example below.

When we ran the CC version of Mondex no violations were detected. To check
that it was actually capable of detection we introduced some CC violations and
checked they were detected. For example, we changed one clause of canStart-
FromEaFrom from balance(p) > 1 to balance(p) > 1. The results of normal
model-checking were unaltered, but the CC version produced a counter-example
in which the state of the second purse is a NaV:

purse2 =
PurseBase_nav (
Precondition_of_function_WORLD2INV_startFromEaFrom_not_satisfied)

This indicated that the error was the non-satisfaction of the precondition of
startFromEaFrom in the context WORLD2INV.

Use of the CC version of SAL increases our confidence in the quality of
the specification. It also increases our confidence that the proofs of confidence
conditions — which are partly generated as TCCs in PVS after translation, and
otherwise generated by the translator to PVS as extra lemmas to be proved —
can be done. Again model-checking is a useful precursor to the effort of proof.

5 Conclusion

The aim of this work is to see, for this example, (a) whether the Z proof could
be mechanically proved and so confirmed, and (b) how much can be automated.
We are clearly some way yet from having an automated proof: a lot of this proof
had to be done by hand. It is also not clear how much of the expertise required
to do such proofs can be taught to software engineers.

There are also a number of other problems that are not solved by automation
of the proof and model checking processes alone:

— Is there a contradiction in our specification somewhere? If there is, effec-
tively, axiom false somewhere in our specification then all our proofs could
have gone through. One can argue that automating proofs increases this
risk: a user might notice. In fact this possibility is less likely than it might
seem. Since we know that WORLD2 implements WORLD1, and WORLD1
implements WORLDO, then any such contradiction must exist at level 2 if
it exists anywhere. Since level 2 is mostly constructive it is much less likely
to be present without being spotted. The RSL to PVS translator includes
confidence conditions in the translation as lemmas (when these are not sub-
sumed by PVS TCCs). These conditions therefore have to be proved, and
their proof removes the possibility of many possible sources of contradiction.
We have also seen that the special CC version of the translator to SAL can
be used to give us confidence that these conditions are not violated.

— Is our model correct? If we didn’t specify the right thing then all our results
are useless. This can only be resolved by someone carefully checking the
specification by reading it. Hence it is important that our language (and our
style of using it) be readable, expressing concepts at an appropriate level,
with an intuitive semantics, etc.

— Is our “concrete” specification correctly implemented? Our level 2 specifica-
tion is still an abstraction of the actual code. Is the chip istself safe from
attack by microprobing [Mon97]?

— Are the tools correct? We rely on translators from RSL to PVS and SAL,
and on the PVS and SAL engines: none of these have been proved correct.

— For model checking, if the only result we see is “proved”, is anything actually
happening, or are we only visiting a small set of states because the guards of
some transitions are never true? Here we can be much more confident if, as
we did here, some expectedly false assertions are included, when the output
traces that accompany failure show us the transitions that have occurred.

— While model checking does not require interaction guiding the system to the
proof, using SAL to automatically check the Mondex specification written in
RSL required substantial modification and rewriting. We had to substantially
change the RSL specification in order to reduce the number of possible states.
Furthermore, we had to rewrite the RSL specification after these changes to
help the SAL optimizer.

— Our state reduction raises the question of whether results of model checking
are applicable to the full specification. Our rewrites for SAL’s optimizer
raise the question of whether in practice software engineers can be expected
to learn enough about tailoring specifications to the requirements of model
checking in general and about the internal operation of SAL to successfully
use it or whether the optimizations used in SAL can be improved to be
applicable to a wider range of inputs. In order to successfully employ SAL in
practice software engineers will need a good selection of techniques to make
their specifications accessible to the model checker.

— The key to being able to do a proof of such a system is finding the appropri-
ate invariant. Unfortunately there is no single “correct” invariant. Anything
which can be proved from an invariant is also an invariant of course, and so

is any weaker expression, obtained for example by selecting just a subset of
our 14 conjuncts. An invariant has to be strong enough to enable the proofs,
but preferably no stronger, because that would require more proof effort
(and, incidentally, make our system harder to maintain if we have to change
it because of changed requirements). It also has, of course, to be an actual
invariant and not an erroneous one! Finding such an invariant is not easy,
and probably requires deep knowledge of why something works, in this case
of the ideas behind the design of the protocol. There are techniques for dis-
covering invariants from code or specifications, but of course one discovered
from the specification may be erroneous if the specification is. Model check-
ing is very useful in checking that proposed invariants are indeed invariant,
but does not help one to find them.

— What are the important properties? The two properties we proved are the
fundamental ones, according to the original problem, but they are also quite
weak. They say nothing about individual purses, for example, so there is
nothing to say that a transfer from A to B, say, does not involve stealing
from C. Liveness properties such as the ability to actually transfer money,
or to clear a purse log, might also be interesting. The size of the proof task
makes it difficult to easily extend a model designed for proof of particular
properties, as this model is, at least at the abstract levels, to prove other
properties. We did show it was possible to transfer money, by carefully de-
signing a multiple operation to do so, but it was rather an artificial exercise?.
For liveness properties, especially in nondeterministic systems, model check-
ing is much more convenient. Once the model has been set up then it is
comparatively little effort to devise and check formulae for new properties,
and liveness demonstrations can easily be done by getting the model checker
to find a counter-example to a claim for the property’s negation. So proving
fundamental properties, and using a model checker to explore a range of
other properties, makes a powerful combination in practice.

Could we have done better by writing specifications in PVS and SAL directly?
Could we, for example, have made the PVS proofs easier, more amenable to au-
tomation? We think not. The translators to PVS and to SAL are quite straight-
forward: there is mostly a one-to-one correspondence between RSL constructs
and PVS/SAL ones. We chose SAL as the target language for model checking
RSL because of its comparatively rich type system, enabling us for example to
translate RSL variant types as SAL DATATYPEs, rather than having to encode
everything using only ranges of integers and Booleans, as some model checkers
would force us to do. Hence we think (a) that the translators generate PVS and
SAL code that is very close to what would be written by hand in the other
languages, and (b) that problematic constructs in either target language can be
avoided by writing the RSL in a suitable way. There are some issues here, for

2 Tt is in fact impossible, because of the nondeterminism involved, to specify in advance
the conditions under which a transfer will take place. The “proof” we give exploits
a feature of the PVS logic that the epsilon (choice) operator is deterministic: this is
not true in the RSL logic.

example the currently poor support for modularity in SAL, and of course its
requirement for finiteness, but generally we found little contradiction between
good style in RSL and good translated code.

References

[DGO2] Aristides Dasso and Chris W. George. Transforming RSL into PVS. Technical
Report 256, UNU/IIST, P.O. Box 3058, Macau, May 2002.

[dMOS03] L. de Moura, S. Owre, and N. Shankar. The SAL language manual.
Technical Report SRI-CSL-01-02, SRI International, 2003. Available from
http://sal.csl.sri.com.

[IE97] Blake Ives and Michael Earl. Mondex international: Reengineering money.
Technical Report CRIM CS97/2, London Business School, 1997.

[Inc] MasterCard International Incorporated. Mondex.

[ITS] ITSEC. http://en.wikipedia.org/wiki/ITSEC.

[Mon97] Mondex’s Pilot System Broken. http://jya.com/mondex-hack.htm, Septem-
ber 1997.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in Artificial Intelligence,
pages 748-752, Saratoga, NY, June 1992. Springer-Verlag.

[RAI92] The RAISE Language Group. The RAISE Specification Language. BCS Prac-
titioner Series. Prentice Hall, 1992.

[RAI95] The RAISE Method Group. The RAISE Development Method. BCS Prac-
titioner Series. Prentice Hall, 1995. Available by ftp from ftp://ftp.iist.
unu. edu/pub/RAISE/method_book.

[SCWO00] S. Stepney, D. Cooper, and J. C. P. Woodcock. An Electronic Purse: Speci-
fication, Refinement, and Proof. Technical Monograph PRG-126, Oxford Uni-
versity Computing Laboratory, 2000.

[Spi92] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

